首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal induction of postaggregative gene expression requires that vegetative cells are first exposed to 2-4 hr of nanomolar cAMP pulses, and subsequently for 4-6 hr to steady-state cAMP concentrations in the micromolar range. Cyclic AMP pulses, which are endogenously produced before and during aggregation, induce full responsiveness to cAMP as a morphogen. The transduction pathway from the cell surface cAMP receptor to postaggregative gene expression may involve Ca2+ ions as intracellular messengers. A cAMP-induced increase in intracellular cAMP or cGMP levels is not involved in the transduction pathway.  相似文献   

2.
Cyclic AMP is essential for the accumulation of many prespore mRNAs and can advance the time of appearance of mRNAs specifically enriched in prestalk cells. Additionally, when late-developing cells are washed free of cAMP, a number of growth phase mRNAs reaccumulate. This reaccumulation can be suppressed by cAMP. These effects of cAMP are all mediated through the cell surface cAMP receptor and can occur under conditions where the receptor-associated adenylate cyclase is inactive, indicating that the initial intracellular transduction event necessary for expression of these mRNAs does not depend upon cAMP synthesis. The dihydropyridine derivatives, nifedipine and nitrendipine, are highly specific Ca++ channel blockers. They are shown here to prevent the influx of Ca++ from the external medium that occurs in response to cAMP binding to the cell surface receptor during development. These two compounds as well as another Ca++ antagonist, 8-N,N-diethylamino)octyl-3,4,5-trimethoxy-benzoate (TMB-8) and a calmodulin inhibitor, N-(6-amino-hexyl)-5-chloro-1-naphthalene sulfonamide (W7), all specifically decrease cAMP-mediated prespore mRNA accumulation in a dose-dependent manner. They also prevent cAMP from suppressing the expression of the growth phase genes. The growth phase mRNAs reaccumulate in cAMP-treated cells in the presence of increasing concentrations of these drugs. By contrast, cAMP induction of the pre-stalk-enriched mRNA is not as significantly affected by these agents. These results raise the possibility that the cell surface cAMP receptor can couple to different signal transduction systems and thereby induce or suppress the expression of different sets of cAMP-regulated genes during development.  相似文献   

3.
Dictyostelium discoideum cells have been generated that lack myosin heavy chain (MHC) due to antisense RNA inactivation of the endogenous mRNA or to insertional mutagenesis of the myosin gene. These cells retain chemotactic movement in gradients of the chemoattractant cAMP. Furthermore, cAMP does induce many biochemical and physiological responses in aggregative cells, including binding of cAMP to surface receptors, modification, and down-regulation of the receptor; activation of adenylate and guanylate cyclase, secretion of cAMP; and the association of actin to the Triton-insoluble cytoskeleton. Cells lacking MHC were found to have a requirement for bivalent cations in the medium for optimal chemotaxis and cell aggregation.  相似文献   

4.
We show that removal of yeast extract and trypticase from growth medium is sufficient for induction of several key events which occur during the early stages of Dictyostelium differentiation: run-off of polysomes, the earliest known change in macromolecular metabolism; appearance of the cell surface cAMP receptor; and aggregation itself. Starvation of glucose has little effect on these parameters. These results are consistent with those of other investigators who showed that starvation only of amino acids will induce other activities associated with cAMP-mediated cell signaling and cell-cell adhesion. We show, in contrast, that other factors are involved in the increase in the relative rates of synthesis of three polypeptides very early in differentiation: actin, and two proteins (“45-min” proteins) which are synthesized only during the period of 45–90 min. The induction of synthesis of these three proteins and presumably, of their mRNAs, is not the result of starvation for glucose or amino acids but is the result of plating cells at high density. The increases in the synthesis of these proteins are dependent on the density at which cells are plated and do not occur at a density 75-fold lower than the density used in standard experiments. Cells growing at high density or near stationary phase do not show the induction of increased synthesis of actin or the “45-min” proteins. These experiments suggest that these early developmental changes may be dependent on a threshold level of a diffusible factor excreted early in development.  相似文献   

5.
A monospecific polyclonal antiserum to the surface cAMP receptor of Dictyostelium has been developed by immunization with purified receptor immobilized on particles of polyacrylamide and on nitrocellulose paper. In Western blots, the antiserum displays high affinity and specificity for both the R (Mr 40,000) and D (Mr 43,000) forms of the receptor previously identified by photoaffinity labeling with 8-azido-[32P] cAMP. These bands, labeled with the photoaffinity label or with 32 Pi, were quantitatively and specifically immunoprecipitated, supporting co-purification data that all represent the same polypeptide. The R form, found in unstimulated cells, contained at least 0.2 mol of phosphate/mol of receptor. The D form, generated by cAMP stimulation of intact cells, contained at least 4 mol of phosphate/mol of receptor. In the absence of detergents, the receptor was exclusively located on membranes. The receptor was solubilized effectively in Triton X-100 and sedimented as a broad peak of 5-7 S on sucrose velocity gradients. Western blots of membranes isolated at different times after starvation indicate that the appearance of cell surface cAMP binding sites during the aggregation stage of development (5-6 h) is due to de novo synthesis of receptor protein. Pulse labeling with [35S]methionine indicated that the receptor is most rapidly synthesized during the preaggregation stage of development (1-3 h), prior to its maximal accumulation in membranes. The serum specifically immunoprecipitates a polypeptide of Mr 37,000 from an in vitro translation reaction using RNA isolated from preaggregation stage cells. The time course of expression of the mRNA coding for the Mr 37,000 polypeptide parallels the rate of receptor synthesis in vivo.  相似文献   

6.
117 antigen is a glycoprotein expressed on the surface of D. discoideum cells at aggregation. It then disappears and is later re-expressed on the surface of a subpopulation of cells at culmination, the terminal differentiation stage (Sadeghi et al. 1987). A cDNA clone was used to show that the appearance of cell surface 117 antigen accurately reflects the expression of the 117 gene as measured by mRNA levels. It was also shown that during multicellular development there is a reciprocal relationship between the levels of 117 mRNA and the mRNA which codes for prespore surface glycoprotein, PsA. Dual parameter flow cytometry was used to demonstrate that the 117 antigen is found on the surface of maturing prespore cells after the PsA glycoprotein disappears, but that it is not found on mature spores. Using three monoclonal antibodies which identify respectively 117 antigen, PsA, and MUD3 antigen (a spore coat glycoprotein--probably Sp96), two new stages of final spore maturation were defined. These results indicate that there is a recapitulation of at least one aggregative cell surface glycoprotein in the prespore subpopulation of cells as they rise up the stalk during final spore development. This raises the possibility that culmination, which involves complex three dimensional morphogenetic movements not unlike those observed during animal embryogenesis, involves components of the two-dimensional pattern seen during aggregation.  相似文献   

7.
The temporal sequence of PTH/PTHrP receptor mRNA, binding, biologic activity, and its dependence on matrix synthesis was determined using MC3T3-E1 preosteoblast-like cells and primary rat calvarial cells in vitro. Osteoblastic cells were induced to differentiate and form mineralized nodules with the addition of ascorbic acid and β-glycerophosphate, and samples were collected from 0–26 days of culture. DNA levels as determined by fluorometric analysis increased 12- and 17-fold during the collection period for both MC3T3-E1 and primary calvarial cells respectively. Steady state mRNA levels for the PTH/PTHrP receptor as determined by northern blot analysis, were initially low for both cell types, peaked at day 4 and 5 for MC3T3-E1 and primary calvarial cells respectively, and declined thereafter. Competition binding curves were performed during differentiation using 125I-PTHrP. The numbers of receptors per μg DNA were greatest at days 3 and 5 for MC3T3-E1 and primary calvarial cells respectively. The biologic activity of the receptor was evaluated by stimulating the cells with 10 nM PTHrP and determining cAMP levels via a binding protein assay. The PTHrP-stimulated cAMP levels increased 5-fold to peak values at day 5 for MC3T3-E1 cells and 6-fold to peak values at day 4 for the primary calvarial cells. Ascorbic acid was required for maximal development of a PTH-dependent cAMP response since ascorbic acid-treated MC3T3-E1 cells had twice the PTH-stimulated cAMP levels as non-treated cells. When the collagen synthesis inhibitor 3,4-dehydroproline was administered to MC3T3-E1 cultures prior to differentiation, there was a subsequent diminution of the PTH/PTHrP receptor mRNA gene expression and numbers of receptors per cell; however, if administered after the initiation of matrix synthesis there was no reduction in PTH/PTHrP receptor mRNA. These findings indicate that the PTH/PTHrP receptor is associated temporally at the level of mRNA, protein, and biologic activity, with a differentiating, matrix-producing osteoblastic cell in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

8.
117 antigen is involved in the process of intercellular cohesion in Dictyostelium discoideum [Brodie et al., 1983]. The antigen, a 69- and 72-kDa doublet, was found to arise from a 60- and 62-kDa precursor. The mature antigen contains N-linked oligosaccharides that are sulfated and fucosylated [Sadeghi et al., 1987]. These oligosaccharide chains are resistant to endoglycosidase H digestion. 117 antigen also contains a post-translationally added carbohydrate-containing modification(s). Unlike the N-linked oligosaccharide, this carbohydrate moiety is sensitive to periodate oxidation. 117 antigen is developmentally regulated, and the changes in rate of 117 antigen synthesis reflect changes in the cellular levels of its mRNA. 117 mRNA accumulates in starving cells and reaches its maximum when cells become aggregation competent. The mRNA levels then decline, and by the time the slug structure is formed, no 117 mRNA is present. 117 mRNA reaccumulates for a brief period during early culmination and then returns to an undetectable level.  相似文献   

9.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), two potent smooth-muscle relaxants, have been shown to cause uterine relaxation. Both CGRP- and AM-binding sites in the uterus increase during pregnancy and decrease at labor and postpartum. These changes in binding sites appear to be related to the changes in calcitonin receptor-like receptor (CRLR), receptor activity-modified protein 1 (RAMP1), RAMP2, and RAMP3 mRNA levels. It is not clear, however, whether the changes in the receptor components occur in the myometrial cells and whether the steroid hormones can directly alter these receptor components in the muscle cells. In addition, the mechanism of CGRP and AM signaling in the rat myometrium is not well understood. Therefore, we examined the mRNA expression of CGRP- and AM-receptor components, G protein Galphas, CGRP, and AM stimulation of cAMP and cGMP, and the effects of progesterone on these parameters in the Eker rat uterine myometrial smooth-muscle cell line (ELT3). ELT3 cells expressed CGRP- and AM-receptor components CRLR, RAMP1, RAMP2, and RAMP3. Expression of CRLR and RAMP1 mRNA increased with progesterone treatment and decreased with estradiol-17beta treatment. However, RAMP2 and RAMP3 mRNA expressions were unaltered by both progesterone and estradiol. Progesterone increased (P<0.05) Galphas expression and augmented CGRP- and AM-induced increases in cAMP levels. In uterine smooth-muscle cells, the antagonist to Galphas protein NF449 decreased basal as well as CGRP- and AM-stimulated cAMP levels. None of the cell treatments affected cyclic GMP production. Our results suggest that the progesterone-stimulated increases in CGRP and AM receptors, Galphas protein levels, and cAMP generation in the myometrial cells may be responsible for increased uterine relaxation sensitivity to CGRP and AM during pregnancy.  相似文献   

10.
In the large species of the cellular slime mold Dictyostelium , cell aggregation is regulated by extracellular cAMP. During aggregation, cAMP is released in pulses from cells in the aggregation centers and these rhythmic signals are propagated through the population by a signal relay system. In addition to triggering the relay response, the pulsatile signals also regulate the chemotactic movement of the cells and early cell differentiation. These different cellular responses to exogenous cAMP are thought to be mediated via cAMP receptors, which appear on the cell surface shortly after starvation.
Using a sensitive assay, the equilibrium binding properties of these receptors were analyzed at low cAMP concentrations. As reported earlier, Scatchard plots of cAMP binding to preaggregative amoebae of D. discoideum strain NP187 in the concentration range 2–500 nM were curvilinear suggesting either receptor heterogeneity or negative cooperative interactions. However, at cAMP concentrations below approximately 1.5 nM, the affinity of the receptors was found to decline as a function of decreasing receptor occupancy. This apparent positive cooperativity was observed with binding sites on crude plasma membranes as well as on intact cells, and it occurred at both 0°C and 22°C. Moreover, apparent positive cooperativity was a property of the receptors on all strains of D. discoideum examined and on one strain of D. purpureum . Unlike preaggregative cells, receptors on postaggregative cells often lacked this property.
The lowest concentration of cAMP pulses that can appreciably stimulate membrane differentiation in strain NP187 was found to be 0.15–1.5 nM. Since similar concentrations of exogenous cAMP have been reported to trigger minimal chemotactic and relay responses in D. discoideum , the apparent positive cooperative behavior of the cAMP receptor might function to generate a steep cellular response threshold.  相似文献   

11.
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 mug/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2+/-1.7 h from 24.4+/-4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events.  相似文献   

12.
Melanophores are pigmented cells capable of quick colour changes through coordinated transport of their intracellular pigment granules. We demonstrate the involvement of phosphoinositide 3-kinase (PI3-K) in Xenopus and Labrus aggregation by the use of the PI3-K inhibitor, LY-294002. In Xenopus, wortmannin-insensitive PI3-K was found to be essential for the aggregation, mitogen-activated protein kinase (MAPK) activation and tyrosine phosphorylation of a 280-kDa protein, and for the maintenance of low cyclic adenosine 3′:5′-monophosphate (cAMP) during the aggregated state. Pre-aggregated cells disperse completely to LY-294002 at 50–100 μM, involving a transient elevation in cAMP due to adenylate cyclase (AC) stimulation or to inhibition of cyclic nucleotide phosphodiesterase (PDE). The inactive analogue LY-303511 did not induce dispersion at the same concentrations. PDE4 and/or PDE2 was found to be involved in melanosome aggregation. The similar kinetics of LY-294002 and various PDE inhibitors indicates that the elevation of cAMP might be due to inhibition of PDE. In Labrus melanophores, LY-294002 had a less dramatic effect, probably due to less dependence on PDE in regulation of cAMP levels. In Xenopus aggregation, we suggest that melatonin stimulation of the Mel1c receptor via Gβγ activates PI3-K that, directly or indirectly via MAPK, activates PDE.  相似文献   

13.
A characterization of the preaggregative period of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The preaggregative period of Dictyostelium discoideum has been characterized by measuring the reduction in time for the onset of aggregation under conditions which hinder close cell-cell associations, inhibit protein synthesis, and/or include continuous high concentrations or pulsed low concentrations of exogenous cAMP. The results demonstrate that: the preaggregative period (normally 7 hr for cells from log phase cultures) can be dissected into two distinct components: an initial component which includes the first 4.5 hr, and a second component which includes the last 2.5 hr; the first component will progress at normal rate in the continuous absence of close cell-cell associations (as single amoebae in suspension) or in the continuous absence of de novo protein synthesis; the second component will not progress in the continuous absence of close cell-cell associations or de novo protein synthesis; high concentrations of cAMP continuously present in suspension cultures do not affect progress through the first component, nor do they support progress through the second component; however, if cells are allowed to form close cell-cell associations during progress through the first component, high concentrations of cAMP will support progress through the second component in the absence of close cell-cell associations; these associations, which render cells sensitive to cAMP, will occur in the absence of de novo protein synthesis and before the acquisition of contact sites A; these associations may be completely bypassed if suspended cells are continuously pulsed with low concentrations of cAMP; in this case, pulses of cAMP will support progress through the final component in continuous suspension cultures; and the acquisition of contact sites A will not occur in the absence of progress through the second component; in contrast, the acquisition of cAMP binding sites on the cell's surface will occur. These results are considered in terms of the complexity and regulation of the preaggregative period of Dictyostelium.  相似文献   

14.
Testosterone biosynthesis in Leydig cells is dependent on two cytochrome P450 enzymes, cholesterol side-chain cleavage (P450scc) and 17 alpha-hydroxylase/C17-20 lyase (P450(17 alpha]. The expression of these two enzymes is differentially regulated by LH acting via its second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), and by specific steroid hormones. P450scc is constitutively expressed in normal mouse Leydig cells and in MA-10 tumor Leydig cells. Chronic cAMP stimulation increases the steady state levels of P450scc mRNA and de novo P450scc protein synthesis. In contrast, cAMP is obligatory for de novo synthesis of P450(17 alpha) in normal mouse Leydig cells; P450(17 alpha) synthesis ceases in the absence of luteinizing hormone or cAMP. MA-10 tumor Leydig cells do not express P450(17 alpha) even after treatment with cAMP. The amount of P450(17 alpha) in Leydig cells is negatively regulated by testosterone acting by two distinct mechanisms. At low concentrations, testosterone acts via the androgen receptor to repress cAMP-induced synthesis of P450(17 alpha), whereas at high concentrations this steroid increases the rate of degradation of the enzyme by an oxygen-mediated mechanism. Both constitutive and cAMP-induced synthesis of P450scc protein and steady state levels of mRNA are modulated by glucocorticoids. In normal mouse Leydig cells, glucocorticoids repress P450scc synthesis and steady state levels of P450scc mRNA, whereas glucocorticoids stimulate P450scc synthesis and levels of P450scc mRNA in the tumor Leydig cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.  相似文献   

16.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

17.
In the present communication, an experimental approach is utilized that facilitates the study of biochemical processes induced in B cells after their interaction with Th cells. In this approach, Th cell clones are stimulated for 18 h upon anti-CD3-coated plates, fixed with paraformaldehyde, and added at a 2 to 3:1 ratio to small, resting B cells (isolated from Percoll gradients). Th cells not stimulated on anti-CD3-coated plates, but fixed with paraformaldehyde, serve as controls for these experiments. The activated, fixed Th cells induce a transient, sixfold increase in B cell levels of cAMP, as well as an increase in B cell expression of ornithine decarboxylase (ODC) activity. This enzyme initiates the synthesis of polyamines and has been shown to be increased as cells enter the growth phase. In addition, previous studies have shown that the cellular levels of ODC activity are controlled by a multi-tiered regulatory cascade. To examine this aspect, polyclonally stimulated B cells were studied. Such cells demonstrated a gradual increase in ODC mRNA levels that peaked between 6 and 15 h and can be partially explained by a three- to fourfold increase in mRNA stability but not by changes in the enzyme affinity for substrate. The increase in ODC mRNA occurs in the absence of protein synthesis, suggesting that the ODC gene is a member of the immediate/early gene family. Finally, the early increase in ODC mRNA was enhanced in cells in which cAMP levels were artificially elevated, suggesting the possibility that the cAMP-dependent signaling pathway participates during the regulation of this gene expression. The significance of these experimental results concerning the process of B cell activation is discussed.  相似文献   

18.
19.
20.
Differential regulation of the regulatory subunits of cAMP-dependent protein kinase isozymes correlates with the growth inhibitory effect of site-selective 8-Cl-cAMP demonstrated in cancer cell lines (Ally, S., Tortora, G., Clair, T., Grieco, D., Merlo, G., Katsaros, D., Ogreid, D., D?skeland, S.O., Jahnsen, T., and Cho-Chung, Y.S. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 6319-6322). Such selective modulation of protein kinase isozyme regulatory subunits was also found in the 8-Cl-cAMP-induced inhibition of both transformation and transforming growth factor alpha (TGF alpha) production in Ki-ras-transformed rat kidney fibroblasts (Tortora, G., Ciardiello, F., Ally, S., Clair, T., Salomon, D. S., and Cho-Chung, Y. S. (1989) FEBS Lett. 242, 363-367). In this work, we have demonstrated that 8-Cl-cAMP antagonizes the TGF alpha effect in TGF alpha-transformed mouse mammary epithelial cells (NOG-8TFC17) at the level of gene expression for cAMP receptor protein isoforms, RI and RII (the regulatory subunits of protein kinase isozymes). Northern blot analysis demonstrated that in the transformed NOG-8TFC17 cells, compared with the nontransformed counterpart NOG-8 cells, the mRNA levels for the RI alpha cAMP receptor protein markedly increased, whereas the mRNA levels for the RII alpha and RII beta cAMP receptor proteins decreased. 8-Cl-cAMP, which induced growth inhibition and phenotypic reversion in NOG-8TFC17 cells, caused an inverse change in the mRNA patterns of the cAMP receptor proteins; RI alpha cAMP receptor mRNA sharply decreased to levels comparable with that of the nontransformed NOG-8 cells, whereas RII beta mRNA increased to a level even greater than that in the NOG-8 cells. In addition, one mRNA species of RII alpha increased, whereas the other RII alpha mRNA species decreased during the treatment. The mRNA level for the catalytic subunit of protein kinase, however, did not change during 8-Cl-cAMP treatment. In addition, 8-Cl-cAMP brought about a reduction in both TGF alpha mRNA and protein levels. These coordinated changes in the expression of the cAMP receptor proteins and TGF alpha were not observed during cis-hydroxyprolineor TGF beta-induced growth inhibition of the NOG-8TFC17 cells. Thus, the antagonistic effect of 8-Cl-cAMP toward TGF alpha-induced transformation involves modulation of the expression of a specific set of cellular genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号