首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biobehavioural analysis of activity anorexia suggests that the motivation for physical activity is regulated by food supply and body weight. In the present experiment, food allocation was varied within subjects by prefeeding food-deprived rats 0, 5, 10 and 15 g of food before sessions of lever pressing for wheel-running reinforcement. The experiment assessed the effects of prefeeding on rates of wheel running, lever pressing, and postreinforcement pausing. Results showed that prefeeding animals 5 g of food had no effect. Prefeeding 10 g of food reduced lever pressing for wheel running and rates of wheel running without a significant change in body weight; the effect was, however, transitory. Prefeeding 15 g of food increased the animals' body weights, resulting in a sustained decrease of wheel running and lever pressing, and an increase in postreinforcement pausing. Overall the results indicate that the motivation for physical activity is regulated by changes in local food supply, but is sustained only when there is a concomitant change in body weight.  相似文献   

2.
Fasting has widespread physiological and behavioral effects such as increases in arcuate nucleus neuropeptide Y (NPY) gene expression in rodents, including Siberian hamsters. Fasting also stimulates foraging and food hoarding (appetitive ingestive behaviors) by Siberian hamsters but does relatively little to change food intake (consummatory ingestive behavior). Therefore, we tested the effects of third ventricular NPY Y1 ([Pro(34)]NPY) or Y5 ([D-Trp(34)]NPY) receptor agonists on these ingestive behaviors using a wheel running-based food delivery system coupled with simulated burrow housing. Siberian hamsters had 1) no running wheel access and free food, 2) running wheel access and free food, or 3) foraging requirements (10 or 50 revolutions/pellet). NPY (1.76 nmol) stimulated food intake only during the first 4 h postinjection ( approximately 200-1,000%) and mostly in hamsters with a foraging requirement. The Y1 receptor agonist markedly increased food hoarding (250-1,000%), increased foraging as well as wheel running per se, and had relatively little effect on food intake (<250%). Unlike NPY, the Y5 agonist significantly increased food intake, especially in foraging animals ( approximately 225-800%), marginally increased food hoarding (250-500%), and stimulated foraging and wheel running 4-24 h postinjection, with the distribution of earned pellets favoring eating versus hoarding across time. Across treatments, food hoarding predominated early postinjection, whereas food intake tended to do so later. Collectively, NPY stimulated both appetitive and consummatory ingestive behaviors in Siberian hamsters involving Y1/Y5 receptors, with food hoarding and foraging/wheel running (appetitive) more involved with Y1 receptors and food intake (consummatory) with Y5 receptors.  相似文献   

3.
In previous studies, we demonstrated that local exposures to the lung periphery to 0.1 ppm ozone (O3) produce increases in resistance to flow through the collateral system (Rcs) which are prevented by vagotomy, and the local exposures to 1.0 ppm O3 produces increases in Rcs which are only partially mediated by the parasympathetic system. In the present studies, we evaluated the effects of short exposures to O3 on reactions to H2O and histamine in anesthetized male dogs when no residual effects of the O3 exposures could be detected. For this purpose a fiber-optic bronchoscope was wedged in a segmental airway of anesthetized dogs and was used to deliver O3, aerosols of H2O, histamine (1.5 X 10(-4) mg), and atropine (0.1 mg). Measurements of Rcs were used to monitor responses to these agents. Responses to three successive challenges with H2O and with histamine were not different from each other. A 30-min exposure to 0.1 ppm O3 between the first and second challenge did not alter responses to histamine or H2O. However, a 10-min exposure to 1.0 ppm O3 resulted in a significant increase in responses to both H2O and histamine. No correlation was noted between the magnitude of response to O3 and the increase in response to histamine or H2O following O3 exposure. Parasympathetic blockade (atropine or bilateral cervical vagotomy) abolished the increase in response to H2O but not the increase in response to histamine following exposure to 1.0 ppm O3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Rats could accumulate food pellets by responding on one lever, and then gain access to them by responding on a second lever N times (experiment 1), by ceasing to respond on the first lever for D seconds (experiment 2), or by making a single, vigorous response of force W on the second lever (experiment 3). The design may be viewed as an analogue of central place foraging. As N (distance), D (time), or W (effort) increased, load (the average number of pellets accumulated before they were eaten) also increased. It appeared that delay mediated the effect of the other independent variables. A simple model of central place foraging was shown to accommodate the data.  相似文献   

5.
To investigate models of plasticity in respiratory motor output, we determined the effects of chronic unilateral phrenicotomy and/or exercise on time-dependent responses to episodic hypoxia in the contralateral phrenic nerve. Anesthetized (urethane), ventilated, and vagotomized rats were presented with three, 5-min episodes of isocapnic hypoxia (11% O(2)), separated by 5 min of hyperoxia (50% O(2)). Integrated phrenic (and hypoglossal) nerve discharge were recorded before and during each hypoxic episode, for the first 5 min after the first hypoxic episode, and at 30 and 60 min after the final episode. Of 36 rats, one-half were sedentary while the other one-half had free access to a running wheel; each of these groups was split into three subgroups: 1) unoperated, 2) chronic left phrenicotomy (27-37 days), and 3) sham operated. Neither unilateral phrenicotomy nor running wheel activity influenced the short-term hypoxic phrenic response (during hypoxia) or long-term facilitation (posthypoxia). Posthypoxia frequency decline was exaggerated in phrenicotomized-sedentary rats relative to unoperated-sedentary rats (change in burst frequency = -23+/-4 vs. -11 +/-5 bursts/min, respectively; 5 min posthypoxia; P<0.05), an effect that was eliminated by spontaneous exercise. The results indicate that neither voluntary running nor unilateral phrenicotomy has major effects on time-dependent hypoxic phrenic responses, with the exception of an unexpected effect of phrenicotomy on posthypoxia frequency decline in sedentary rats.  相似文献   

6.
Four rats responded under a choice reaction-time procedure. At the beginning of each trial, the rats were required to hold down a center lever for a variable duration, release it following a high- or low-pitched tone, and press either a left or right lever, conditionally on the tone. Correct choices were reinforced with a probability of .95 or .05 under blinking or static houselights, respectively. After performance stabilized, disruptive effects of free access to food pellets prior to sessions (prefeeding) and intraperitoneal injection of haloperidol were examined on multiple behavioral measures (i.e., the number of trials completed, percent of correct responses, and reaction time). Resistance to prefeeding depended on the probability of food delivery for the number of trials completed and reaction time. Resistance to haloperidol, on the other hand, was not systematically affected by the probability of food delivery for all dependent measures.  相似文献   

7.
Squirrel monkeys were trained to respond under second-order schedules of food presentation and then sequentially exposed to either a self-administration (SA) and then a conditioned taste aversion (CTA) procedure, or a CTA procedure and then a SA procedure. Initial exposure to stimuli associated with post-session delivery of cocaine (0.3 mg/kg) either maintained (SA) or suppressed (CTA) responding, respectively. In contrast, following exposure to CTA, SA procedures failed to maintain levels of responding comparable to those seen with initial exposure to SA. Following exposure to SA, the CTA procedure failed to suppress responding. Thus, prior exposure to either the reinforcing or suppressant effects of cocaine modified its subsequent behavioral effects, suggesting a unique role for behavioral history in the abuse potential of cocaine.  相似文献   

8.
The lever-pressing of rats was reinforced with food according to a variable-interval 1-min schedule. In one group, occasional illumination of cue lights for 30-sec periods was followed by a brief electric shock; responding was suppressed during these periods. Naloxone (0.01–10 mg/kg) did not change the degree to which responding was suppressed during the pre-shock stimulus. Diprenorphine (0.1–10 mg/kg) slightly attenuated suppression, and diazepam (1.0–3.0 mg/kg) increased responding during the stimulus to normal levels. These results confirm that opiate antagonists do not always enhance the effects of shock on behavior. In a second group, occasional illumination of the cue lights for 20-sec periods was followed by delivery of free food pellets. Responding was also suppressed during the pre-food stimulus. Neither naloxone nor diprenorphine had any effect on response rate during this stimulus. In contrast to the results of earlier studies using benzodiazepines, diazepam (1.0–3.0 mg/kg) produced a marked attenuation of response suppression during the pre-food stimulus.  相似文献   

9.
Pirenzepine, the prototype M1 muscarinic receptor antagonist, is an important compound for investigating the functional significance of M1 receptors at the integrated level of behavior but may have limitations imposed by its physical chemistry. Like the nonselective antagonist methylatropine, pirenzepine is highly hydrophilic and crosses the blood-brain-barrier with difficulty. We compared methylatropine with pirenzepine, given intraperitonealy, as antagonists of the behavioral effects of peripheral or central muscarinic activation. Lever-press responses of male Sprague-Dawley rats were maintained under a schedule requiring 10 responses for each food delivery. Administration of oxotremorine or the quaternary analog oxotremorine-M decreased rates of responding by at least 90%. Both methylatropine and pirenzepine antagonized the behavioral effects of oxotremorine-M; maximum reversal was 70%. Although methylatropine was about 30 times more potent than pirenzepine as an antagonist of the peripheral muscarinic activity of oxotremorine-M, it was inactive as an antagonist of oxotremorine when given in doses up to 153 mumol/kg. Pirenzepine, however, reversed oxotremorine-induced behavioral effects, with a maximum antagonism of 50%. These results suggest that pirenzepine interacts with central muscarinic receptors when administered systemically without producing marked behavioral effects of its own. Systemically administered pirenzepine may thus be a useful tool in further investigations of the relevance of M1 receptors to behavioral function.  相似文献   

10.
The mechanism(s) for how physically active organisms are resistant to many damaging effects of acute stressor exposure is unknown. Cellular induction of heat-shock proteins (e.g., HSP72) is one successful strategy used by the cell to survive the damaging effects of stress. It is possible, therefore, that the stress-buffering effect of physical activity may be due to an improved HSP72 response to stress. Thus the purpose of the current study was to determine whether prior voluntary freewheel running facilitates the stress-induced induction of HSP72 in central (brain), peripheral, and immune tissues. Adult male Fischer 344 rats were housed with either a mobile running wheel (Active) or a locked, immobile wheel [sedentary (Sed)] for 8 wk before stressor exposure. Rats were exposed to either inescapable tail-shock stress (IS; 100 1.6-mA tail shocks, 5-s duration, 60-s intertrial interval), exhaustive exercise stress (EXS; treadmill running to exhaustion), or no stress (controls). Blood, brain, and peripheral tissues were collected 2 h after stressor termination. The kinetics of HSP72 induction after IS was determined in cultured mesenteric lymph node cells. Activation of the stress response was verified by measuring serum corticosterone (RIA). Tissue and cellular HSP72 content were measured using HSP72 ELISA in cell lysates. Both Active and Sed rats had elevated levels of serum corticosterone after stress. In contrast, Active but not Sed rats exposed to IS and/or EXS had elevated HSP72 in dorsal vagal complex, frontal cortex, hippocampus, pituitary, adrenal, liver, spleen, mesenteric lymph nodes, and heart. In addition, Active rats exposed to IS demonstrated a faster induction of lymphocyte HSP72 compared with Sed rats. Thus Active rats responded to stress with both greater and faster HSP72 responses compared with Sed rats. These results indicate that previous physical activity potentiates HSP72 expression after a wide range of stressors. Facilitated induction of HSP72 may contribute to the increased stress resistance previously reported in physically active organisms.  相似文献   

11.
Six male albino Wistar rats were placed in running wheels and exposed to a fixed interval 30-s schedule that produced either a drop of 15% sucrose solution or the opportunity to run for 15s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. To assess the effect of pre-running, animals were allowed to run for 1h prior to a session of responding for sucrose and running. Results showed that, after pre-running, response rates in the later segments of the 30-s schedule decreased in the presence of a wheel-running stimulus and increased in the presence of a sucrose stimulus. Wheel-running rates were not affected. Analysis of mean post-reinforcement pauses (PRP) broken down by transitions between successive reinforcers revealed that pre-running lengthened pausing in the presence of the stimulus signaling wheel running and shortened pauses in the presence of the stimulus signaling sucrose. No effect was observed on local response rates. Changes in pausing in the presence of stimuli signaling the two reinforcers were consistent with a decrease in the reinforcing efficacy of wheel running and an increase in the reinforcing efficacy of sucrose. Pre-running decreased motivation to respond for running, but increased motivation to work for food.  相似文献   

12.
Induction of voluntary prolonged running by rats   总被引:1,自引:0,他引:1  
The rat is widely used in studies of the metabolic and physiological effects of physical exercise. The most commonly used form of exercise is running on treadmills or mechanically driven running wheels. Rats will not voluntarily run significant distances, under normal circumstances. If rats are exposed to running wheels with food freely available, only very limited activity normally occurs. When rats with access to a running wheel are restricted to a fixed amount of food, presented once per day, consistent running occurs. The running is spontaneous and very sensitive to the amount of food provided. Six 6-wk-old rats of 197 g mean body wt were induced to run for 139 days. The distance run increased rapidly over a 20-day initial period on a food supply of 15 g/day (vs. 19.5 g/day consumption by sedentary controls). From day 20 to day 139 the mean distance run was described by the regression equation distance (m/day) = 10,410 - 37.9 X days. Food provided was varied according to distance run, ranging from 15 to 18 g/day, and was normally 17.5 g/day. Thus a food deprivation of 10% of normal consumption will result in mean distances run of approximately 8,000 m/day. The use of pair-fed control animals without access to a wheel allows the conduct of experiments to test the effects of chronic long-distance running. The running is spontaneous; thus the technique avoids the complications accompanying techniques that force running.  相似文献   

13.
Pulmonary function hyperresponsiveness, defined as enhanced response on reexposure to O3, compared with initial O3 exposure, has been previously noted in consecutive day exposures to high ambient O3 concentrations (i.e., 0.32-0.42 ppm). Effects of consecutive-day exposure to lower O3 concentrations (0.20-0.25 ppm) have yielded equivocal results. To examine the occurrence of hyperresponsiveness at two levels of O3 exposure, 15 aerobically trained males completed seven 1-h exposures of continuous exercise at work rates eliciting a mean minute ventilation of 60 1/min. Three sets of consecutive-day exposures, involving day 1/day 2 exposures to 0.20/0.20 ppm O3, 0.35/0.20 ppm O3, and 0.35/0.35 ppm O3, were randomly delivered via an obligatory mouthpiece inhalation system. A filtered-air exposure was randomly placed 24 h before one of the three sets. Treatment effects were assessed by standard pulmonary function tests, exercise ventilatory pattern (i.e., respiratory frequency, f; and tidal volume, VT) changes and subjective symptom (SS) response. Initial O3 exposures to 0.35 and 0.20 ppm had a statistically significant effect, compared with filtered air, on all measurements. On reexposure to 0.35 ppm O3 24 h after an initial 0.35 ppm O3 exposure, significant hyperresponsiveness was demonstrated for forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), f, VT, and total SS score. Exposure to 0.20 ppm O3 24 h after 0.35 ppm O3 exposure, however, resulted in significantly enhanced responses (compared with initial 0.20 ppm O3 exposure) only for FEV1, f, and VT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Animal studies are very useful in detection of early disease indicators and in unravelling the pathophysiological processes underlying core psychiatric disorder phenotypes. Early indicators are critical for preventive and efficient treatment of progressive psychiatric disorders like anorexia nervosa. Comparable to physical hyperactivity observed in anorexia nervosa patients, in the activity-based anorexia rodent model, mice and rats express paradoxical high voluntary wheel running activity levels when food restricted. Eleven inbred mouse strains and outbred Wistar WU rats were exposed to the activity-based anorexia model in search of identifying susceptibility predictors. Body weight, food intake and wheel running activity levels of each individual mouse and rat were measured. Mouse strains and rats with high wheel running activity levels during food restriction exhibited accelerated body weight loss. Linear mixed models for repeated measures analysis showed that baseline wheel running activity levels preceding the scheduled food restriction phase strongly predicted activity-based anorexia susceptibility (mice: Beta  =  −0.0158 (±0.003 SE), P<0.0001; rats: Beta  =  −0.0242 (±0.004 SE), P<0.0001) compared to other baseline parameters. These results suggest that physical activity levels play an important role in activity-based anorexia susceptibility in different rodent species with genetically diverse background. These findings support previous retrospective studies on physical activity levels in anorexia nervosa patients and indicate that pre-morbid physical activity levels could reflect an early indicator for disease severity.  相似文献   

15.
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive – running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals’ wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.  相似文献   

16.
The effect of physical training on insulin and glucagon release in perfused rat pancreas was examined in the spontaneously exercised group running in a wheel cage an average of 1.4 km/day for 3 weeks and in the sedentary control group kept in the cage whose rotatory wheel was fixed on purpose. Pancreatic immunoreactive insulin (IRI) responses to glucose and arginine were reduced by 28% and 47.8% respectively in trained rats compared with untrained rats, while IRI content of the pancreas was similar in these two groups. The demonstrated decrease in insulin secretion of the beta-cell of the trained rats, in response to the glucose and arginine stimulations, may be functional in nature. On the other hand, neither pancreatic glucagon immunoreactivity (GI) response to glucose and arginine nor GI content of the pancreas was modified by exercise training. These results demonstrate that exercise training reduces IRI responses to glucose as well as to arginine stimulations, but does not modify any secretory response of pancreatic GI.  相似文献   

17.
There are large individual differences in the success rates of exercise intervention programs aimed at the prevention and treatment of obesity-related disorders. In the present study, we tested the hypothesis that differences in coping style may impact the success rates of these intervention programs. We tested insulin responses before and after voluntary wheel running in both passive (insulin resistant) Roman Low Avoidance (RLA) and proactive (insulin sensitive) Roman High Avoidance (RHA) rats using intravenous glucose tolerance tests (IVGTTs). To control for a potential difference between voluntary and forced exercise, we also included RLA and RHA rats that were subjected to forced running. We found the following: 1) when given the opportunity to run voluntarily in a running wheel, passive RLA rats run more than proactively than RHA rats; 2) voluntary exercise leads to a normalization of insulin responses during an IVGTTs in RLA rats; and 3) there were no behavioral and physiological differences in efficacy between voluntary and forced running. We conclude that exercise, both forced and voluntary, is a successful lifestyle intervention for the treatment of hyperinsulinemia, especially in individuals with a passive coping style.  相似文献   

18.

Background

Post traumatic stress disorder (PTSD) can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel) in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS).

Methodology/Principal Findings

IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC) inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE) starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE). This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus.

Conclusions/Significance

This animal study shows the importance of (physical) exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.  相似文献   

19.
Running wheel access and resulting voluntary exercise alter food intake and reduce body weight. The neural mechanisms underlying these effects are unclear. In this study, we first assessed the effects of 7 days of running wheel access on food intake, body weight, and hypothalamic gene expression. We demonstrate that running wheel access significantly decreases food intake and body weight and results in a significant elevation of CRF mRNA expression in the dorsomedial hypothalamus (DMH) but not the paraventricular nucleus. Seven-day running wheel access also results in elevated arcuate nucleus and DMH neuropeptide Y gene expression. To assess a potential role for elevated DMH CRF activity in the activity-induced changes in food intake and body weight, we compared changes in food intake, body weight, and hypothalamic gene expression in rats receiving intracerebroventricular (ICV) CRF antagonist alpha-helical CRF or vehicle with or without access to running wheels. During a 4-day period of running wheel access, we found that exercise-induced reductions of food intake and body weight were significantly attenuated by ICV injection of the CRF antagonist. The effect on food intake was specific to a blockade of activity-induced changes in meal size. Central CRF antagonist injection further increased DMH CRF mRNA expression in exercised rats. Together, these data suggest that DMH CRF play a critical role in the anorexia resulting from increased voluntary exercise.  相似文献   

20.
Packet theory is based on the assumption that the momentary probability of producing a bout or packet of responding is controlled by the conditional expected time function. Bouts of head entry responses of rats into a food cup appear to have the same characteristics across a range of conditions. The conditional expected time function is the mean expected time remaining until the next food delivery as a function of time since an event such as food or stimulus onset. The conditional expected time function encodes mean interval duration as well as the distribution form so that both the mean response rate and form of responding in time can be predicted. Simulations of Packet theory produced accurate quantitative predictions of: (1) the effect of reinforcement density (mean food-food interval) and distribution form on responding; (2) scalar variance in fixed interval responding; (3) CS-US and intertrial interval effects on the strength of conditioning; and (4) the effect of the ratio of cycle:trial time on the strength of conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号