首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peptide bond formation on the ribosome is catalyzed by RNA. Kinetic studies using Escherichia coli ribosomes have shown that catalysis (>10(5)-fold overall acceleration) is due to a large part to substrate positioning. However, peptide bond formation is inhibited approximately 100-fold by protonation of a ribosomal group with pKa=7.5, indicating either a contribution of general acid-base catalysis or inhibition by a pH-dependent conformational change within the active site. The function of a general base has been attributed to A2451 of 23S rRNA, and a charge relay system involving G2447 has been postulated to bring about the extensive pKa shift of A2451 implied in the model. Using a rapid kinetic assay, we found that the G2447A mutation, which has essentially no effect on cell growth, lowers the rate of peptide bond formation about 10-fold and does not affect the ionization of the ribosomal group with pKa=7.5 taking part in the reaction. This result does not support the proposed charge relay mechanism involving G2447 and the role of A2451 as general base in the catalysis of peptide bond formation.  相似文献   

2.
Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.  相似文献   

3.
Trobro S  Aqvist J 《Biochemistry》2008,47(17):4898-4906
The current view of ribosomal peptidyl transfer is that the ribosome is a ribozyme and that ribosomal proteins are not involved in catalysis of the chemical reaction. This view is largely based on the first crystal structures of bacterial large ribosomal subunits that did not show any protein components near the peptidyl transferase center (PTC). Recent crystallographic data on the full 70S ribosome from Thermus thermophilus, however, show that ribosomal protein L27 extends with its N-terminus into the PTC in accordance with independent biochemical data, thus raising the question of whether the ribozyme picture is strictly valid. We have carried out extensive computer simulations of the peptidyl transfer reaction in the T. thermophilus ribosome to address the role of L27. The results show a reaction rate similar to that obtained in earlier simulations of the Haloarcula marismortui reaction. Furthermore, deletion of L27 is predicted to only give a minor rate reduction, in agreement with biochemical data, suggesting that the ribozyme view is indeed valid. The N-terminus of L27 is predicted to interact with the A76 phosphate group of the A-site tRNA, thereby explaining the observed impairment of A-site substrate binding for ribosomes lacking L27. Simulations are also reported for the reaction with puromycin, an A-site tRNA analogue which lacks the A76 phosphate group. The calculated energetics shows that this substrate can cause a downward p K a shift of L27 and that the reaction proceeds faster with the L27 N-terminus deprotonated, in contrast to the situation with aminoacyl-tRNA substrates. These results could explain the observed differences in pH dependence between the puromycin and C-puromycin reactions, where the former reaction has been seen to depend on an additional ionizing group besides the attacking amine, and our model predicts this ionizing group to be the N-terminal amine of L27.  相似文献   

4.
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.  相似文献   

5.
The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring ribozymes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

6.
The catalytic mechanism of peptide bond formation on the ribosome is not known. The crystal structure of 50S ribosomal subunits shows that the catalytic center consists of RNA only and suggests potential catalytic residues. Here we report rapid kinetics of the peptidyl transferase reaction with puromycin at rates up to 50 s(-1). The rate-pH profile of the reaction reveals that protonation of a single ribosomal residue (pK(a) = 7.5), in addition to protonation of the nucleophilic amino group, strongly inhibits the reaction (>100-fold). The A2451U mutation within the peptidyl transferase center has about the same inhibitory effect. These results suggest a contribution to overall catalysis of general acid-base and/or conformational catalysis involving an ionizing group at the active site.  相似文献   

7.
In the absence of ribosomal particles, elongation factor G (EF-G) promotes very little GTP hydrolysis. After the addition of some aliphatic alcohols to EF-G, the rate of nucleotide cleavage was significantly increased and GTPase activity was easily detectable. The highest stimulation, nearly 16-fold, occurred with 2-propanol at a 20% (v/v) concentration. The reaction showed the characteristics of an enzymatic catalysis, but the rate was three orders of magnitude lower than that of the ribosome-dependent EF-G GTPase activity. Striking similarities between the two activities indicated that the catalysis stimulated by the alcohol was due to EF-G itself. We found that EF-G GTPase activity in the presence of 2-propanol displayed an absolute specificity for GTP as in the presence of ribosomes; the two activities copurified to a constant ratio and exhibited coincident chromatographic and electrophoretic patterns; the temperature for the half-inactivation of EF-G was 59.3 degrees C for both GTPase systems, as well as the kinetic constant for the thermal inactivation process which was found to be 0.05 min-1; and the Km for the GTP in the presence of 2-propanol (59 microM) was similar to that found in the presence of ribosomes. These results indicate that the EF-G molecule carries a catalytic site for GTP hydrolysis, which in the absence of ribosomal particles is activated by an appropriate alcohol/water surrounding medium.  相似文献   

8.
The superfamily of ribosome-inactivating proteins (RIPs) consists of toxins that catalytically inactivate ribosomes at a universally conserved region of the large ribosomal RNA. RIPs carry out a single N-glycosidation event that alters the binding site of the translational elongational factor eEF1A and causes a cessation of protein synthesis that leads to subsequent cell death. Maize RIP1 is a kernel-specific RIP with the unusual property of being produced as a zymogen, proRIP1. ProRIP1 accumulates during seed development and becomes active during germination when cellular proteases remove acidic residues from a central domain and both termini. These deletions also result in RIP activation in vitro. However, the effectiveness of RIP1 activity against target ribosomes remains species-dependent. To determine the potential efficiency of maize RIP1 as a plant defense protein, we used quantitative RNA gel blots to detect products of RIP activity against intact ribosomal substrates from various species. We determined the enzyme specificity of recombinant maize proRIP1 (rproRIP1), papain-activated rproRIP1 and MOD1 (an active deletion mutant of rproRIP1) against ribosomal substrates with differing levels of RIP sensitivity. The rproRIP1 had no detectable enzymatic activity against ribosomes from any of the species assayed. The papain-activated rproRIP1 was more active than MOD1 against ribosomes from either rabbit or the corn pathogen, Aspergillus flavus, but the difference was much more marked when rabbit ribosomes were used as a substrate. The papain-activated rproRIP1 was much more active against rabbit ribosomes than homologous Zea mays ribosomes and had no detectable effect on Escherichia coli ribosomes.  相似文献   

9.
ABSTRACT

The ribosomal peptidyl transferase center (PTC) resides in the large ribosomal subunit and catalyzes the two principal chemical reactions of protein synthesis: peptide bond formation and peptide release. The catalytic mechanisms employed and their inhibition by antibiotics have been in the focus of molecular and structural biologists for decades. With the elucidation of atomic structures of the large ribosomal subunit at the dawn of the new millennium, these questions gained a new level of molecular significance. The crystallographic structures compellingly confirmed that peptidyl transferase is an RNA enzyme. This places the ribosome on the list of naturally occurring riboyzmes that outlived the transition from the pre-biotic RNA World to contemporary biology. Biochemical, genetic and structural evidence highlight the role of the ribosome as an entropic catalyst that accelerates peptide bond formation primarily by substrate positioning. At the same time, peptide release should more strongly depend on chemical catalysis likely involving an rRNA group of the PTC. The PTC is characterized by the most pronounced accumulation of universally conserved rRNA nucleotides in the entire ribosome. Thus, it came as a surprise that recent findings revealed an unexpected high level of variation in the mode of antibiotic binding to the PTC of ribosomes from different organisms.  相似文献   

10.
Following peptide-bond formation, the mRNA:tRNA complex must be translocated within the ribosomal cavity before the next aminoacyl tRNA can be accommodated in the A site. Previous studies suggested that following peptide-bond formation and prior to EF-G recognition, the tRNAs occupy an intermediate (hybrid) state of binding where the acceptor ends of the tRNAs are shifted to their next sites of occupancy (the E and P sites) on the large ribosomal subunit, but where their anticodon ends (and associated mRNA) remain fixed in their prepeptidyl transferase binding states (the P and A sites) on the small subunit. Here we show that pre-translocation-state ribosomes carrying a dipeptidyl-tRNA substrate efficiently react with the minimal A-site substrate puromycin and that following this reaction, the pre-translocation-state bound deacylated tRNA:mRNA complex remains untranslocated. These data establish that pre-translocation-state ribosomes must sample or reside in an intermediate state of tRNA binding independent of the action of EF-G.  相似文献   

11.
12.
The polyadenylic acid-containing messenger ribonucleic acid from rabbit reticulocyte polyribosomes, isolated by a rapid and very gentle procedure (Krystosek, A., Cawthon, M. L., and Kabat, D. (1975) J. Biol. Chem. 250, 6077-6084), sediments in a sucrose gradient in three sharp peaks, at 9 S, 17 to 18 S, and 28 S. The alpha and beta globin messenger activity follows the absorbance profile in the sucrose gradients and has its major peak at 17 to 18 S. The larger messengers are more active than 9 S messenger by approximately 2-fold per mass unit of ribonucleic acid or by at least 8-fold per molecule. The major 17 to 18 S form of globin messenger was examined further and was shown to be a 1:1 complex of 9 S messenger and 18 S ribosomal ribonucleic acid. The effect of 18 S ribosomal ribonucleic acid on translation of purified 9 S globin messenger was analyzed in a messenger-dependent protein-synthesizing system (Krystosek, A., Cawthon, M. L., and Kabat, D. (1975) J. Biol. Chem. 250, 6077-6084). In the absence of exogenous ribosomal ribonucleic acid, 9 S messenger is inefficiently translated; a large excess of messenger is required to saturate the system; and globin is synthesized mainly on di- and monoribosomes. Exogenous liver or reticulocyte 18 S ribosomal ribonucleic acid potentiates 9 S messenger translation and renders it at least 10 times more efficient. The potentiation reaction can also be accomplished by increasing the concentration of ribosomes in the assay system. However, transfer or messenger ribonucleic acids cannot carry out this reaction. It is proposed that 9 S globin messenger ribonucleic acid is an inactive molecule which is normally potentiated by specific reversible base pairing with an accessible region of ribosomal ribonucleic acid contained in a 40 S ribosomal subunit. The potentiated messenger interacts with initiation factors and with other ribosomal subunits to synthesize protein. Potentiation is the first specific function in protein synthesis demonstrated for the ribosomal ribonucleic acid portion of ribosomes.  相似文献   

13.
Periodate-oxidized tRNA (tRNAox), the 2′,3′-dialdehyde derivative of tRNA, was used as a zero-length active site-directed affinity labeling reagent, to covalently label proteins at the binding site for the 3′-end of tRNA on human 80S ribosomes. When human 80S ribosomes were reacted with tRNAAspox positioned at the P-site, in the presence of an appropriate 12 mer mRNA, a set of two tRNAox-labeled ribosomal proteins (rPs) was observed. The majorily labeled protein was identified as the large subunit rP L36a-like (RPL36AL) by means of mass spectrometry. Intact tRNAAsp competed with tRNAAspox for the binding to the P-site, by preventing tRNA-protein cross-linking with RPL36AL. Altogether, the data presented in this report are consistent with the presence of RPL36AL at or near the binding site for the CCA end of the tRNA substrate positioned at the P-site of human 80S ribosomes. It is the first time that a ribosomal protein is found in an intimate contact (i.e. at a zero-distance) with a nucleotide of the conserved CCA terminus of P-site tRNA which is the substrate of peptidyl transferase reaction. RPL36AL which is strongly conserved in eukaryotes belongs to the L44e family of rPs, a representative of which is Haloarcula marismortui RPL44e.  相似文献   

14.
In a study of the translational efficiency of ribosomal subunits as a function of an in vivo temperature pretreatment, ribosomes were isolated from heat-pretreated (36°C) and reference (20°C) wheat seedlings (Triticum aestivum L.). The efficiency of recombined subunits in translating polyuridylic acid was assessed. A threefold increase in the rate of incorporation of phenylalanine by ribosomes from heat-pretreated plants was due to the large ribosomal subunit. This adaptive temperature effect was not correlated with a higher thermal stability of ribosomes or subunits from heat-pretreated seedlings, and two-dimensional gel electrophoresis failed to detect structural alterations of ribosomal proteins. Phosphorylation of ribosomal proteins in vitro showed no differences between ribosomes or subunits from heat-pretreated and reference plants. Incubation with [32P]orthophosphate in vivo led to twice the amount of phosphate in ribosomal proteins from heat-pretreated wheat seedlings. This result is important with respect to the evaluation of the molecular basis of enhanced translational efficiency of ribosomes isolated from heat-pretreated wheat seedlings.  相似文献   

15.
The arrival of high resolution crystal structures for the ribosomal subunits opens a new phase of molecular analysis and asks for corresponding analyses of ribosomal function. Here we apply the phosphorothioate technique to dissect tRNA interactions with the ribosome. We demonstrate that a tRNA bound to the P site of non-programmed 70 S ribosomes contacts predominantly the 50 S, as opposed to the 30 S subunit, indicating that codon-anticodon interaction at the P site is a prerequisite for 30 S binding. Protection patterns of tRNAs bound to isolated subunits and programmed 70 S ribosomes were compared. The results suggest the presence of a movable domain in the large ribosomal subunit that carries tRNA and reveal that only approximately 15% of a tRNA, namely residues 30 +/- 1 to 43 +/- 1, contact the 30 S subunit of programmed 70 S ribosomes, whereas the remaining 85% make contact with the 50 S subunit. Identical protection patterns of two distinct elongator tRNAs at the P site were identified as tRNA species-independent phosphate backbone contacts. The sites of protection correlate nicely with the predicted ribosomal-tRNA contacts deduced from a 5.5-A crystal structure of a programmed 70 S ribosome, thus refining which ribosomal components are critical for tRNA fixation at the P site.  相似文献   

16.
17.
During the initial ten hours of growth in lymphocytes stimulated by phytohemagglutinin, the cells are converted from a state in which over 70% of all ribosomes are inactive free ribosomes, to one in which over 80% of ribosomes are in polysomes or in native ribosomal subunits. In this initial period, there was a neglible increase in total ribosomal RNA due to increased RNA synthesis, and abolition of ribosomal RNA synthesis with low concentrations of actinomycin D did not interfere with polysome formation. Therefore, the conversion is accomplished by the activation of existing free ribosomes rather than by accumulation of newly synthesized particles. The large free ribosome pool of resting lymphocytes is thus an essential source of components for accelerated protein synthesis early in lymphocyte activation, before increased synthesis can provide a sufficient number of new ribosomes. Free ribosomes accumulate once more after 24 to 48 hours of growth, when RNA and DNA synthetic activity are maximal. This reaccumulation of inactive ribosomes at the peak of growth activity may represent preparation for a return to the resting state where cells are again susceptible to stimulation. Activation of free ribosomes to form polysomes appears to involve modification of at least two steps: (a) dissociation of free ribosomes with stabilization as native subunits, and (b) adjustment of a rate-limiting step at initiation.  相似文献   

18.
GTPase activation of elongation factors Tu and G on the ribosome   总被引:6,自引:0,他引:6  
Mohr D  Wintermeyer W  Rodnina MV 《Biochemistry》2002,41(41):12520-12528
The GTPase activity of elongation factors Tu and G is stimulated by the ribosome. The factor binding site is located on the 50S ribosomal subunit and comprises proteins L7/12, L10, L11, the L11-binding region of 23S rRNA, and the sarcin-ricin loop of 23S rRNA. The role of these ribosomal elements in factor binding, GTPase activation, or functions in tRNA binding and translocation, and their relative contributions, is not known. By comparing ribosomes depleted of L7/12 and reconstituted ribosomes, we show that, for both factors, interactions with L7/12 and with other ribosomal residues contribute about equally and additively to GTPase activation, resulting in an overall 10(7)-fold stimulation. Removal of L7/12 has little effect on factor binding to the ribosome. Effects on other factor-dependent functions, i.e., A-site binding of aminoacyl-tRNA and translocation, are fully explained by the inhibition of GTP hydrolysis. Based on these results, we propose that L7/12 stimulates the GTPase activity of both factors by inducing the catalytically active conformation of the G domain. This effect appears to be augmented by interactions of other structural elements of the large ribosomal subunit with the switch regions of the factors.  相似文献   

19.
We have analyzed the interactions between the signal recognition particle (SRP), the SRP receptor (SR), and the ribosome using GTPase assays, biosensor experiments, and ribosome binding assays. Possible mechanisms that could contribute to an enhanced affinity between the SR and the SRP-ribosome nascent chain complex to promote protein translocation under physiological ionic strength conditions have been explored. Ribosomes or 60S large ribosomal subunits activate the GTPase cycle of SRP54 and SRalpha by providing a platform for assembly of the SRP-SR complex. Biosensor experiments revealed high-affinity, saturable binding of ribosomes or large ribosomal subunits to the SR. Remarkably, the SR has a 100-fold higher affinity for the ribosome than for SRP. Proteoliposomes that contain the SR bind nontranslating ribosomes with an affinity comparable to that shown by the Sec61 complex. An NH2-terminal 319-residue segment of SRalpha is necessary and sufficient for binding of SR to the ribosome. We propose that the ribosome-SR interaction accelerates targeting of the ribosome nascent chain complex to the RER, while the SRP-SR interaction is crucial for maintaining the fidelity of the targeting reaction.  相似文献   

20.
The CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthase) of Escherichia coli is the first enzyme in the pathway committed to the biosynthesis of the major lipid in E. coli, phosphatidylethanolamine. The enzyme is unique among the phospholipid biosynthetic enzymes due to its high affinity for ribosomes in crude extracts. We report here investigations which define the nature of this in vitro affinity for ribosomes. Phosphatidylserine synthase can be dissociated from ribosomes in the presence of various inorganic salts at high ionic strength. Dissociation was also brought about by cellular levels of the polyamine spermidine. These results suggest the interaction of the enzyme with ribosomes in vitro is primarily ionic in nature, and polyamines may prevent this interaction in vivo. In the presence of nonionic detergent-lipid substrate mixed micelles under assay conditions the enzyme is also dissociated from ribosomes. Dissociation does not occur in the presence of detergent alone or in the presence of lipids which are not substrates or products of the enzyme. This dissociation by lipid substrate indicates the enzyme is not associated with ribosomes during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号