首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Embryonic stem (ES) cells are becoming a popular model of in vitro neurogenesis, as they display intrinsic capability to generate neural progenitors that undergo the known steps of in vivo neural development. These include the acquisition of distinct regional fates, which depend on growth factors and signals that are present in the culture medium. The control of the intracellular signaling that is active at different steps of ES cell neuralization, even when cells are cultured in chemically defined medium, is complicated by the endogenous production of growth factors. However, this endogenous production has been poorly investigated so far. To address this point, we performed a high‐throughput analysis of the expression of morphogens during mouse ES cell neuralization in minimal medium. We found that during their neuralization, ES cells increased the expression of members of Wnt, Fibroblast Growth Factor (FGF), and BMP families. Conversely, the expression of Activin/Nodal and Shh ligands was low in early steps of neuralization. In this experimental condition, neural progenitors and neurons generated by ES cells expressed a gene expression profile that was consistent with a midbrain identity. We found that endogenous BMP and Wnt signaling, but not FGF signaling, synergistically affected ES cell neural patterning, by turning off a profile of dorsal/telencephalic gene expression. Double BMP and Wnt inhibition allowed neuralized ES cells to sequentially activate key genes of cortical differentiation. Our findings are consistent with a novel synergistic effect of Wnt and BMP endogenous signaling of ES cells in inhibiting a cortical differentiation program. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 66–79, 2015  相似文献   

4.
5.
6.
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13bhnn, to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13bhnn mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13bhnn dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13bhnn mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13bhnn embryos indirectly causes dorsal defects.  相似文献   

7.
Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC) cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D) and ventral (V) elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3), (Tg(hsp70I:tcf3-GFP), or the canonical Wnt inhibitor dickkopf1 (dkk1), (Tg(hsp70i:dkk1-GFP) after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe), and ventral cartilage differentiation (e.g. lower jaws). These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1) protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton.  相似文献   

8.
9.
The Wnt signaling pathway is important in the formation of neural crest cells in many vertebrates, but the downstream targets of neural crest induction by Wnt are largely unknown. Here, we examined quantitative changes in gene expression regulated by Wnt-mediated neural crest induction using quantitative PCR (QPCR). Induction was recapitulated in vitro by adding soluble Wnt to intermediate neural plate tissue cultured in collagen, and induced versus control tissue were assayed using gene-specific primers at times corresponding to premigratory (18 and 24 h) or early (36 h) stages of crest migration. The results show that Wnt signaling up-regulates in a distinct temporal pattern the expression of several genes normally expressed in the dorsal neural tube (slug, Pax3, Msx1, FoxD3, cadherin 6B) at "premigratory" stages. While slug is maintained in early migrating crest cells, Pax3, FoxD3, Msx1 and cadherin 6B all are down-regulated by the start of migration. These results differ from the temporal profile of these genes in response to the addition of recombinant BMP4, where gene expression seems to be maintained. Interestingly, expression of rhoB is unchanged or even decreased in response to Wnt-mediated induction at all times examined, though it is up-regulated by BMP signals. The temporal QPCR profiles in our culture paradigm approximate in vivo expression patterns of these genes before neural crest migration, and are consistent with Wnt being an initial neural crest inducer with additional signals like BMP and other factors maintaining expression of these genes in vivo. Our results are the first to quantitatively describe changes in gene expression in response to a Wnt or BMP signal during transformation of a neural tube cell into a migratory neural crest cell.  相似文献   

10.
Hedgehog (Hh) and Wnt proteins are important signals implicated in several aspects of embryonic development, including the early development of the central nervous system. We found that Xenopus Suppressor-of-fused (XSufu) affects neural induction and patterning by regulating the Hh/Gli and Wnt/β-catenin pathways. Microinjection of XSufu mRNA induced expansion of the epidermis at the expense of neural plate tissue and caused enlargement of the eyes. An antisense morpholino oligonucleotide against XSufu had the opposite effect. Interestingly, both gain- and loss-of-function experiments resulted in a posterior shift of brain markers, suggesting a biphasic effect of XSufu on anteroposterior patterning. XSufu blocked early Wnt/β-catenin signaling, as indicated by the suppression of XWnt8-induced secondary axis formation in mRNA-injected embryos, and activation of Wnt target genes in XSufu-MO-injected ectodermal explants. We show that XSufu binds to XGli1 and Xβ-catenin. In Xenopus embryos and mouse embryonic fibroblasts, Gli1 inhibits Wnt signaling under overexpression of β-catenin, whereas β-catenin stimulates Hh signaling under overexpression of Gli1. Notably, endogenous Sufu is critically involved in this crosstalk. The results suggest that XSufu may act as a common regulator of Hh and Wnt signaling and contribute to intertwining the two pathways.  相似文献   

11.

Background

While the role of canonical (β-catenin-mediated) Wnt signaling in hematolymphopoiesis has been studied extensively, little is known of the potential importance of non-canonical Wnt signals in hematopoietic cells. Wnt4 is one of the Wnt proteins that can elicit non-canonical pathways. We have previously shown that retroviral overexpression of Wnt4 by hematopoietic cells increased thymic cellularity as well as the frequency of early thymic progenitors and bone marrow hematopoietic progenitor cells (HPCs). However, the molecular pathways responsible for its effect in HPCs are not known.

Methodology/Principal Findings

Here we report that Wnt4 stimulation resulted in the activation of the small GTPase Rac1 as well as Jnk kinases in an HPC cell line. Jnk activity was necessary, while β-catenin was dispensable, for the Wnt4-mediated expansion of primary fetal liver HPCs in culture. Furthermore, Jnk2-deficient and Wnt4 hemizygous mice presented lower numbers of HPCs in their bone marrow, and Jnk2-deficient HPCs showed increased rates of apoptosis. Wnt4 also improved HPC activity in a competitive reconstitution model in a cell-autonomous, Jnk2-dependent manner. Lastly, we identified Fz6 as a receptor for Wnt4 in immature HPCs and showed that the absence of Wnt4 led to a decreased expression of four polarity complex genes.

Conclusions/Significance

Our results establish a functional role for non-canonical Wnt signaling in hematopoiesis through a pathway involving Wnt4, Fz6, Rac1 and Jnk kinases.  相似文献   

12.
13.
14.
The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to previous reports in frog, we find that Shh signaling is not required for floor plate vs. notochord decisions and plays a minor role in floor plate specification, where it acts in parallel to Notch signaling. As in zebrafish, Shh signaling is required for specification of the lateral floor plate in the frog. We also find that the medial floor plate in Xenopus comprises two distinct populations of cells, each dependent upon different signals for its specification. Using expression analysis of several midline markers, and dissection of functional relationships, we propose a revised allocation mechanism of dorsal midline specification in Xenopus. Our model is distinct from those proposed to date, and may serve as a guide for future studies in frog and other vertebrate organisms.  相似文献   

15.
Cell competence is a key developmental property. The Caenorhabditis elegans vulval competence group consists of P(3–8).p, six cells aligned along the antero-posterior axis in a wide central body region. The six cells are not equal in their competence: 1) P3.p quits the competence group in half of the individuals; 2) the posterior cells P7.p and P8.p are less competent than central vulval precursor cells. Competence to adopt a vulval fate is controlled by expression of the HOM-C gene lin-39, and maintained through Wnt signals that are secreted from the tail in a long-range gradient. Here we quantify the LIN-39 protein profile in vulval precursor cells of early L2 stage larvae, prior to P3.p fusion and inductive signaling. We show that LIN-39 levels are very low in P3.p and P4.p, peak in P5.p and progressively decrease until P8.p. This unexpectedly centered profile arises independently from the gonad. Posterior Wnt signaling reduces LIN-39 level in the posterior cells by activating the next-posterior HOM-C gene, mab-5. On the anterior side, P3.p and P4.p competence and division are sensitive to the already low LIN-39 and Wnt doses; most dramatically, each of the cwn-1/Wnt and egl-20/Wnt genes show haplo-insufficience for P3.p fate. In contrast to previous results, we find that these Wnts maintain P3.p and P4.p competence without affecting their LIN-39 level. The centered vulval competence profile is thus under the control of the posterior Wnts and of cross-regulation of three HOM-C genes and prepatterns the later induction of vulval fates.  相似文献   

16.

Background

Epidemiological and experimental evidence that support the correlation between Type 2 diabetes mellitus (T2D) and increased risks of colorectal cancer formation have led us to hypothesize the existence of molecular crosstalk between insulin and canonical Wnt signaling pathways. Insulin was shown to stimulate Wnt target gene expression, utilizing the effector of the Wnt signaling pathway. Whether insulin affects expression of components of Wnt pathway has not been extensively examined.

Methods

cDNA microarray was utilized to assess the effect of insulin on gene expression profile in the rat intestinal non-cancer IEC-6 cell line, followed by real-time RT-PCR, Western blotting and reporter gene analyses in intestinal cancer and non-cancer cells.

Results

Insulin was shown to alter the expression of a dozen of Wnt pathway related genes including TCF-4 (= TCF7L2) and frizzled- (Fzd-4). The stimulatory effect of insulin on TCF-4 expression was then confirmed by real-time RT-PCR, Western blotting and luciferase reporter analyses, while the activation on Fzd-4 was confirmed by real-time PCR.

General significance

Our observations suggest that insulin may crosstalk with the Wnt signaling pathway in a multi-level fashion, involving insulin regulation of the expression of Wnt target genes, a Wnt receptor, as well as mediators of the Wnt signaling pathway.  相似文献   

17.
 Proteins encoded by the Wnt family of genes act as signals and have been shown to play important roles in a wide variety of developmental processes. Here we describe the cloning of three Wnt family members from the zebrafish, Danio rerio, which encode proteins with homology to murine Wnt-2, -4 and -5A/B. The expression patterns of the latter two zebrafish genes, designated ZfWnt4 and ZfWnt5 show considerable similarity with their homologues in other vertebrates; ZfWnt2, however, is expressed in the developing viscera in a pattern distinct from its closest murine homologue. In the light of the similarities and differences in the patterns of expression of these genes relative to their homologues in other vertebrates, we speculate on their possible functions. Received 24 October 1995 / Accepted in revised form: 16 January 1996  相似文献   

18.
Rspo2 was identified as a novel common integration site (CIS) for the mouse mammary tumor virus (MMTV) in viral induced mouse mammary tumors. Here we show that Rspo2 modulates Wnt signaling in mouse mammary epithelial cells. Co‐expression of both genes resulted in an intermediate growth phenotype on plastic and had minor effects on the growth‐promoting properties of Wnt1 in soft agar. However, individual Rspo2 and Wnt1 HC11 transfectants as well as the double transfectant were tumorigenic in athymic nude mice, with tumors from each line having distinctive histological characteristics. Rspo2 and Rspo2/Wnt1 tumors contained many spindle cells, consistent with an epithelial–mesenchymal transformation (EMT) phenotype. When Rspo2 and Rspo2/Wnt1 tumor cells were transferred into naïve mice, they exhibited greater metastatic activity than cells derived from Wnt1 tumors. For comparison, C57MG/Wnt1/Rspo2 co‐transfectants exhibited invasive properties in three‐dimensional (3D) Matrigel cultures that were not seen with cells transfected only with Wnt1 or Rspo2. Use of Dickkopf‐1, a specific antagonist of the Wnt/β‐catenin pathway, or short hairpin RNA targeting β‐catenin expression demonstrated that the invasive activity was not mediated by β‐catenin. Our results indicate that Rspo2 and Wnt1 have mutually distinct effects on mammary epithelial cell growth and these effects are context‐dependent. While Rspo2 and Wnt1 act synergistically in the β‐catenin pathway, other mechanisms are responsible for the invasive properties of stable double transfectants observed in 3D Matrigel cultures. J. Cell. Physiol. 227: 1960–1971, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing cells increases with increasing activin concentration while the highest number of T-expressing cells is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17+ endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17+ cells more effectively than activin-mediated induction. Notably, activin induction of Gsc-GFP+ cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17+ cells by activin while BMP4-induced T expression requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro.  相似文献   

20.
Little is known of the control of gene expression in the animal hemisphere of the Xenopus embryo. Here we show that expression of FoxI1e, a gene essential for normal ectoderm formation, is expressed regionally within the animal hemisphere, in a highly dynamic fashion. In situ hybridization shows that FoxI1e is expressed in a wave-like fashion that is initiated on the dorsal side of the animal hemisphere, extends across to the ventral side by the mid-gastrula stage, and is then turned off in the dorsal ectoderm, the neural plate, at the neurula stage. It is confined to the inner layers of cells in the animal cap, and is expressed in a mosaic fashion throughout. We show that this dynamic pattern of expression is controlled by both short- and long-range signals. Notch signaling controls both the mosaic, and dorsal/ventral changes in expression, and is controlled, in turn, by Vg1 signaling from the vegetal mass. FoxI1e expression is also regulated by nodal signaling downstream of VegT. Canonical Wnt signaling contributes only to late changes in the FoxI1e expression pattern.These results provide new insights into the roles of vegetally localized mRNAs in controlling zygotic genes expressed in the animal hemisphere by long-range signaling. They also provide novel insights into the role of Notch signaling at the earliest stages of vertebrate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号