首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red and white axial muscle activity of adult Atlantic salmon Salmo salar was examined using conventional electromyography (EMG x ) and activity radio-transmitters (EMG i ) at 0·5 and 0.7 body lengths (L) along the body of the fish. Critical swimming trials were conducted and maximum sustainable speeds (Ucrit) were unaffected by the presence of electrodes, being 1·51 ± 21 m s−1 (3.33 ± 0.34 L s−1) ( n =44). Regardless of longitudinal position of the electrodes within the musculature, both EMG x s and EMG i s indicated increasing red muscle activity with increasing swimming speed, whereas white muscle fibres were recruited only at speeds > 86±5% Ucrit. Telemetered EMG i signals indicated that muscle activity varied significantly for electrodes implanted at different longitudinal positions along the fish ( P < 0·001). These results suggest that electrode placement is an important influence affecting the signals obtained from radio transmitters that estimate activity and location should be standardized within biotelemetry studies to allow accurate and consistent comparisons of activity between individuals and species. Optimal location for electrode placement was determined to be in the red muscle, towards the tail of the fish (0·7 L ).  相似文献   

2.
Saithe Pollachius virens , tracked diurnally with a split-beam echosounder, showed no relationship between size and swimming speed. The average and the median swimming speeds were 1·05 m s−1(±0·09 m s−1) and 0·93 m s−1, respectively. However, ping-to-ping speeds up to 3·34 m s−1 were measured for 25–29 cm fish, whose swimming speeds were significantly higher at night (1·08 m s−1) than during the day (0·72 m s−1). The high average swimming speed could be related to the foraging or streaming part of the population and not to potential weakness of the methodology. However, the uncertainty of target location increased with depth and resulted in calculated average swimming speeds of 0·15 m s−1 even for a stationary target. With increasing swimming speed the average error decreased to 0 m s−1 for speeds >0·34 m s−1. Species identity was verified by trawling in a pelagic layer and on the bottom.  相似文献   

3.
The swimming performance of Platycephalus bassensis at steady speed was assessed with an emphasis on hydrodynamics. The minimum swimming speed to maintain hydrostatic equilibrium for P. bassensis of 0·271 m total length ( L T) was calculated to be 1·06 L T s−1. At this speed, the required lift to support the mass of the fish was equivalent to 6·6% of the fish mass; 82·7% of which was created by the body as a hydrofoil, and the rest of which was created by the pelvic fins as hydrofoils. The minimum swimming speed decreased with the L T of the fish and ranged from 1·15 L T s−1 for a fish of 0·209 m to 0·89 L T s−1 for a fish of 0·407 m. The forward movement per tail-beat cycle ( i.e. stride length) was described with an equation including quantities of morphological and hydro-mechanical relevance. This equation explained that stride length was increased by the effect of turbulence characterized by the Reynolds number and demonstrated the morphological and hydro-mechanical functional design of the fish for maximizing thrust and minimizing drag. The larger span of the caudal fin and caudal tail-beat amplitude was associated with larger stride length, whereas greater frictional drag was associated with smaller stride length.  相似文献   

4.
The hypothesis that body size and swimming velocity affect proximate body composition, wet mass and size‐selective mortality of fasted fish was evaluated using small (107 mm mean total length, L T) and medium (168 mm mean L T) juvenile rainbow trout Oncorhynchus mykiss that were sedentary or swimming ( c . 1 or 2 body length s−1) and fasted for 147 days. The initial amount of energy reserves in the bodies of fish varied with L T. Initially having less lipid mass and relatively higher mass‐specific metabolic rates caused small rainbow trout that were sedentary to die of starvation sooner and more frequently than medium‐length fish that were sedentary. Swimming at 2 body length s−1 slightly increased the rate of lipid catabolism relative to 1 body length s−1, but did not increase the occurrence of mortality among medium fish. Death from starvation occurred when fish had <3·2% lipid remaining in their bodies. Juvenile rainbow trout endured long periods without food, but their ability to resist death from starvation was limited by their length and initial lipid reserves.  相似文献   

5.
Endurance swimming of diploid and triploid Atlantic salmon   总被引:1,自引:0,他引:1  
When groups of diploid (mean ±  s . e . fork length, L F) 33·0 ± 1·4 cm and triploid (35·3 ± 0·5 cm) Atlantic salmon Salmo salar were forced to swim at controlled speeds in a carefully monitored 10 m diameter 'annular' tank no significant difference was found between the maximum sustained swimming speeds ( U ms, maintainable for 200 min) where the fish swam at the limit of their aerobic capability. Diploids achieved 2·99 body lengths per second (bl s−1)(0·96 m s−1) and triploids sustained 2·91 bl s−1(1·02 m s−1). The selection of fish for the trials was based on their ability to swim with a moving pattern projected from a gantry rotating at the radius of the tank and the selection procedure did not prove to be significant by ploidy. A significant difference was found between the anaerobic capabilities of the fish measured as endurance times at their prolonged swimming speeds. During the course of the experimentation the voluntary swimming speed selected by the fish increased and the schooling behaviour improved. The effect of the curvature of the tank on the fish speeds was calculated (removing the curved effect of the tank increased the speed in either ploidy by 5·5%). Implications of the endurance times and speeds are discussed with reference to the aquaculture of triploid Atlantic salmon.  相似文献   

6.
The prolonged swimming speed and metabolic rate of 0+ year Arctic grayling Thymallus articus were examined with respect to current velocity, water temperature and fish size, and compared to conditions fish occupy in the river. Oxygen consumption (mg O2 h−1) increased with fish mass and temperature (6–23° C), with a steep increase in metabolic rate between 12 and 16° C. Absolute prolonged swimming speed (cm s−1) increased rapidly with fish size (total length, L T, and mass), however, fish in the natural stream habitat occupied current velocities between 15 and 25 cm s−1 or 4  L T s−1, approximately half their potential prolonged swimming speed (10  L T s−1).  相似文献   

7.
Sustained swimming of bluefin tuna was analysed from video recordings made of a captive patrolling fish school [lengths (L) 1.7–3.3 m, body mass (M) 54–433 kg]. Speeds ranged from 0.6 to 1.2 L s−1 (86–260 km day−1) while stride length during steady speed swimming varied between 0.54 and 0.93 L. Maximum swimming speed was estimated by measuring twitch contraction of the anaerobic swimming muscle in pithed fish 5 min after death. Muscle contraction time increased from the shortest just behind the head (30–50 ms at 20% L) to the longest at the tail peduncle (80–90 ms at 80% L) (all at 28°C). A fish (L = 2.26 m) with a muscle contraction time of 50 ms at 25% L can have a maximum tail beat frequency of 10 Hz and maximum swimming speed of 15m s−1 (54km h−1) with a stride length of 0.65L. With a stride length of 1 L a speed of 22.6 m s−1 (81.4 km h−1) is possible. Power used at maximum speed was estimated for this fish at between 10 and 40 kW, with corresponding values for the drag coefficient at a Reynolds number of 4.43 × 107 of 0.0007 and 0.0027.  相似文献   

8.
Physiological impact of sea lice on swimming performance of Atlantic salmon   总被引:6,自引:0,他引:6  
Atlantic salmon Salmo salar were infected with two levels of sea lice Lepeophtheirus salmonis (0·13 ± 0·02 and 0·02 ± 0·00 sea lice g−1). Once sea lice became adults, the ventral aorta of each fish was fitted with a Doppler cuff to measure cardiac output ( ̇ ), heart rate ( f H) and stroke volume ( V S) during swimming. Critical swimming speeds ( U crit) of fish with higher sea lice numbers [2·1 ± 0·1 BL (body lengths) s−1] were significantly lower ( P  < 0·05) than fish with lower numbers (2·4 ± 0·1 BL s−1) and controls (sham infected, 2·6 ± 0·1 BL s−1). After swimming, chloride levels in fish with higher sea lice numbers (184·4 ± 11·3 mmol l−1) increased significantly (54%) from levels at rest and were significantly higher than fish with fewer lice (142·0 ± 3·7 mmol l−1) or control fish (159·5 ± 3·5 mmol l−1). The f H of fish with more lice was 9% slower than the other two groups at U crit. This decrease resulted in ̇ not increasing from resting levels. Sublethal infection by sea lice compromised the overall fitness of Atlantic salmon. The level of sea lice infection used in the present study was lower than has previously been reported to be detrimental to wild Atlantic salmon.  相似文献   

9.
Critical swimming speeds (mean ± s . e .) for juvenile shortnose sturgeon Acipenser brevirostrum were 34·4 cm s−1± 1·7 (2·18 ± 0·09 body lengths, BL s−1). Swimming challenges at 10, 20 and 30 cm s−1 revealed that juvenile A. brevirostrum are relatively poor swimmers, and that the fish did not significantly modify their swimming behaviour, although they spent more time substratum skimming ( i.e. contact with flume floor) at 30 cm s−1 relative to 10 cm s−1. When present, these behavioural responses are probably related to morphological features, such as flattened rostrum, large pectoral fins, flattened body shape and heterocercal tail, and may be important to reduce the costs of swimming.  相似文献   

10.
Atlantic salmon Salmo salar were infected with sea lice Lepeophtheirus salmonis (0·08 ± 0·007 sea lice g−1) over a period of 4 h. Both infected and non‐infected fish were swim tested in sea water (SW) and fresh water (FW). The ventral aorta of each fish was fitted with a Doppler cuff in order to measure cardiac output, stroke volume and heart rate during swim testing. Blood samples were taken at rest and after exercise. Critical swimming speed of infected fish in SW (2·14 ± 0·08 body lengths, bl s−1) was significantly lower ( P  < 0·05) than infected fish switched to FW (2·81 ± 0·08 bl s−1) and non‐infected fish in SW (2·42 ± 0·04 bl s−1) and FW (2·61 ± 0·08 bl s−1). Cardiac and blood results indicated infected fish exposed to FW did experience stress, but relief from osmotic and ionic distress probably reduces energy expenditure, allowing the increase in performance. As the performance of sea lice‐infected fish improved upon transfer to FW, it is likely that heavily infected salmonids do return to FW to restore compromised osmotic and ionic balance, and remove sea lice in the process.  相似文献   

11.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon ( Salmo salar ). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s−1 and two standard deviations of flow velocity of 5 and 8 cm s−1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

12.
When swimming at low speeds, steelhead trout and bluegill sunfish tilted the body at an angle to the mean swimming direction. Trout swam using continuous body/caudal fin undulation, with a positive (head-up) tilt angle ( 0 , degrees) that decreased with swimming speed ( u , cm s−1) according to: 0 =(164±96).u(−1.14±0.41) (regression coefficients; mean±2 s.e. ). Bluegill swimming gaits were more diverse and negative (head down) tilt angles were usual. Tilt angle was −3·0 ± 0.9° in pectoral fin swimming at speeds of approximately 0.2–1.7 body length s−1 (Ls−1; 3–24 cm s−1), −4.5 ±2.6° during pectoral fin plus body/caudal fin swimming at 1·2–1·7 L s−1 (17–24cm s−1), and −5.0± 1.0° during continuous body/caudal fin swimming at 1.6 and 2.5 L s−1 (22 and 35cm s−1). At higher speeds, bluegill used burst-and-coast swimming for which the tilt angle was 0.1±0.6°. These observations suggest that tilting is a general phenomenon of low speed swimming at which stabilizers lose their effectiveness. Tilting is interpreted as an active compensatory mechanism associated with increased drag and concomitant increased propulsor velocities to provide better stabilizing forces. Increased drag associated with trimming also explains the well-known observation that the relationship between tail-beat frequency and swimming speed does not pass through the origin. Energy dissipated because of the drag increases at low swimming speeds is presumably smaller than that which would occur with unstable swimming.  相似文献   

13.
Rainbow trout were trained for 3–4 weeks in a flume at swimming speeds of 1, 2 and 3 l s−1. For each experiment growth rates were estimated and by measuring the hypertrophy of red and mosaic skeletal muscle fibres their function was described at particular swimming speeds and compared with earlier experiments on coalfish using the same technique.
Maximum growth, compared with controls in still water, occurred at swimming speeds of 1 l s−1. At this speed the trout mosaic muscle fibres hypertrophied by 40% but the red muscle fibres showed only a 25% hypertrophy. It is suggested that natural swimming speeds are close to 1Ls−l and the trout mosaic fibres are better adapted for use at this speed in comparison with coalfish white muscle fibres.  相似文献   

14.
Endurance swimming of European eel   总被引:2,自引:0,他引:2  
A long‐term swim trial was performed with five female silver eels Anguilla anguilla of 0·8–1·0 kg ( c . 80 cm total length, L T) swimming at 0·5 body lengths (BL) s−1, corresponding to the mean swimming speed during spawning migration. The design of the Blazka‐type swim tunnel was significantly improved, and for the first time the flow pattern of a swim tunnel for fish was evaluated with the Laser‐Doppler method. The velocity profile over three different cross‐sections was determined. It was observed that 80% of the water velocity drop‐off occurred over a boundary layer of 20 mm. Therefore, swim velocity errors were negligible as the eels always swam outside this layer. The fish were able to swim continuously day and night during a period of 3 months in the swim tunnel through which fresh water at 19° C was passed. The oxygen consumption rates remained stable at 36·9 ± 2·9 mg O2 kg−1 h−1 over the 3 months swimming period for all tested eels. The mean cost of transportation was 28·2 mg O2 kg−1 km−1. From the total energy consumption the calculated decline in fat content was 30%. When extrapolating to 6000 km this would have been 60%, leaving only 40% of the total energy reserves for reproduction after arriving at the spawning site. Therefore low cost of transport combined with high fat content are crucial for the capacity of the eel to cross the Atlantic Ocean and reproduce.  相似文献   

15.
Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT ), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s−1. The logarithm of oxygen consumption rate, and the tail beat frequency of solitary swimming sea bass (28·8 ± 0·4 cm, LT ), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9–14% lower when at the rear of a school than when at the front, corresponding to a 9–23% reduction in oxygen consumption rate.  相似文献   

16.
Routine oxygen consumption ( M o 2) was 35% higher in 1 day starved and 21% higher in 4 day starved adult transgenic coho salmon Oncorhynchus kisutch relative to end of migration ocean-ranched coho salmon. Critical swimming speed ( U crit) and M o 2 at U crit ( M o 2max) were significantly lower in 4 day starved transgenic coho salmon (1·25 BL s−1; 8·79 mg O2 kg−1 min−1) compared to ocean-ranched coho salmon (1·60 BL s−1; 9·87 mg O2 kg−1 min−1). Transgenic fish swam energetically less efficiently than ocean-ranched fish, as indicated by a poorer swimming economy at U crit ( M o 2max     ). Although M o 2max was lower in transgenic coho salmon, the excess post-exercise oxygen consumption (EPOC) measured during the first 20 min of recovery was significantly larger in transgenic coho salmon (44·1 mg O2 kg−1) compared with ocean-ranched coho salmon (34·2 mg O2 kg−1), which had a faster rate of recovery.  相似文献   

17.
Groups of 6-7 cm length rainbow trout, Salmo gairdneri Richardson, were simultaneously trained at four water velocities (0, 1·4, 2·2 and 3·5 Ls-1) for a period of 46 days. Oxygen consumption and swimming ability (fatigue time) were then measured. Only training at 3·5 Ls-1 increased the swimming ability of the fish. A study of the relative proportion of the white and red muscles indicated that the white muscle was increasing its mass at velocities in excess of 2·2 Ls-1. The oxygen consumption rate of the trained fish was lower than that of the untrained fish when considered over the whole velocity range.  相似文献   

18.
The endurance of threespine sticklebacks, Gasterosteus aculeatus , swimming with pectoral fin locomotion at 20° C in a laboratory flume was measured. Each trial lasted a maximum of 480 min. At a speed of 4 body lengths per sec (L s−1) all fish were still swimming at the end of the trial, but endurance decreased at higher speeds. At speeds of 5 or 6 L s−1 (20–30 cm s−1) a few fish still maintained labriform locomotion for the 480 min. However, at a speed of 7 L s−1 all fish furled their pectoral fins and used body and caudal fin propulsion but fatigued rapidly. During sustained swimming, fish could cover distances of 6 km or more. No significant differences between males and females were found.  相似文献   

19.
Sixty-four post-larvae of the King George whiting Sillaginodes punctata were tested in swimming chambers, against one of five flow-through velocities (2, 4, 6, 8 or 10 cm s −1) for up to a maximum of 120 min. Fish were determined by regression to have an FV50 (50% fatigue velocity) of 6.0 cm s−1. No fish survived the full 120 min at 10 cm s−1. Sixteen individuals were tested in a swimming chamber against a flow-through velocity of 6 cm s −1 and allowed to swim to exhaustion. Fish swam between 25 and 538 min with a peak at c . 6–8 h. Total swimming time was not correlated with standard length of fish although the size range examined was narrow. Relative to recent studies on the swimming abilities of late-stage larvae of reef fishes, this study indicates that post-larval King George whiting are weak swimmers. The weak swimming ability of post-larval King George whiting is consistent with studies showing passive dispersal and recruitment of this species.  相似文献   

20.
Parasitism with Myxobolus arcticus did not affect smolt size of sockeye salmon or their osmocompetence, but had a deleterious effect ( P <0.001) on the swimming speed of naturally infected smolts. Parasitized fish had a mean swimming speed of 2.89 fork length s−1 (LF s−1) compared with 4.37 L F s−1 for unparasitized fish. The parasite probably impairs swimming ability by affecting the central nervous system, but this effect does not appear severe enough to limit the parasite's usefulness in stock separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号