首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

2.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

3.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

4.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

5.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

6.
The effect of long-term water stress on photosynthetic carbon metabolism in Casuarina equisetifolia Forst. & Forst. was analysed by measuring CO2 assimilation, stomatal conductance, the quantum yield of photosystem II ( Φ PSII), enzyme activities, and the levels of photosynthetic intermediates and carbohydrates. CO2 assimilation decreased under water stress while the intercellular CO2 concentration ( C i) as estimated by gas exchange measurements remained high. However, the estimates of C i from measurements of Φ PSII suggest that the decrease in photosynthesis can be explained in terms of stomatal closure. Water stress decreased total stromal fructose-1,6-bisphosphatase activity and did not alter the activities and activation states of ribulose bisphosphate carboxylase oxygenase and NADP-dependent malate dehydrogenase (NADP-MDH). The concentration of photosynthetic metabolites, glucose, fructose and sucrose decreased, whereas starch concentrations increased under drought conditions.  相似文献   

7.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

8.
Photoinactivation of photosystem II (PSII) and energy dissipation at low leaf temperatures were investigated in leaves of glasshouse-grown grapevine ( Vitis vinifera L. cv. Riesling). At low temperatures (< 15°C), photosynthetic rates of CO2 assimilation were reduced. However, despite a significant increase in the amount of light excessive to that required by photosynthesis, grapevine leaves maintained high intrinsic quantum efficiencies of PSII ( F v/ F m) and were highly resistant to photoinactivation compared to other species. Non-photochemical energy dissipation involving xanthophylls and fast D1 repair were the main protective processes reducing the 'gross' rate of photoinactivation and the 'net' rate of photoinactivation, respectively. We developed an improved method of energy dissipation analysis that revealed up to 75% of absorbed light is dissipated thermally via pH- and xanthophyll-mediated non-photochemical quenching at low temperatures (5–15°C) and moderate (800 µmol quanta m−2 s−1) light. Up to 20% of the energy flux contributing to electron transport was dissipated via photorespiration when taking into account temperature-dependent mesophyll conductance; however, this flux used in photorespiration was only a relatively small amount of the total absorbed light energy. Photoreduction of O2 at photosystem I (PSI) and subsequent superoxide detoxification (water-water cycle) was more sensitive to inhibition by low temperature than photorespiration. Therefore the water-water cycle represents a negligibly small energy sink below 15°C, irrespective of mesophyll conductance.  相似文献   

9.
To elucidate how excess light energy is dissipated during water deficit, net photosynthesis (PN), stomatal conductance (gs), intercellular CO2 concentration (ci) and Chl a fluorescence were investigated in control and drought-stressed tomato plants ( Lycopersicon esculentum ). Gross O2 evolution (Eo) and gross O2 uptake (Uo) were determined by a mass spectrometric 16O/18O2 isotope technique. Under drought stress PN, gs, ci and Uo decline. While photochemical fluorescence quenching decreases under water deficit, non-photochemical quenching rises. The maximal efficiency of PSII measured in the dark is not affected by drought; however, in the light, Eo decreases under water deficit. The ratio PN/Eo falls under stress while the ratio Uo/Eo increases. We conclude that tomato plants follow a double strategy to avoid photodamage under drought stress conditions: (1) a substantial portion of light energy is emitted as heat and PSII activity is downregulated. This results in a decrease in Eo as well as PN and Uo. Despite reduced charge separation at PSII, the decline of CO2 assimilation because of lowered stomatal conductance and metabolic changes results in the need of degrading excessive photosynthetic electrons. (2) Oxygen is used as an alternative electron acceptor in photorespiration or Mehler reaction and Uo rises relative to Eo.  相似文献   

10.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

11.
Photosynthesis of Coffea arabica after chilling   总被引:2,自引:0,他引:2  
Net photosynthetic CO2 exchange of 1-year-old plants of Coffea arabica L. was studied after the above-ground parts had been exposed once or repeatedly to night temperatures in the chilling range. Chill-reduced rates of CO2 uptake (measured at 24°C and at natural CO, level) were observed after a 12 h night exposure to about 6°C. After exposure to 4°C, activity was reduced to less than half of that of the controls, and after exposure to 0.5°C the leaves suffered visible necrotic injury and were no longer able to take up Co2 If the leaves were not lethally injured, net photosynthesis recovered completely within 2 to 6 days. About 25% of chill-induced reduction of CO2 uptake was due to reduced stomatal aperture and 75% to impairment of carboxylation efficiency.
Chilling on successive nights at 4–6°C reduced CO, uptake progressively on each day following treatment. After 10 nights, activity was decreased to less than 10% of initial performance. Conditioning at temperatures slightly above the chilling level (e.g. 15/I2°C) for 2 weeks led to almost complete impairment of photosynthetic activity without additional chilling stress instead of improving chilling tolerance.  相似文献   

12.
The carbon assimilation efficiency and the internal composition of the chlorophyte Dunaliella viridis have been studied under conditions of current (0.035%) and enriched (1%) levels of CO2, with and without N limitation (supplied as nitrate). Results show that both photosynthesis and growth rates are enhanced by high CO2, but the strategy of acclimation also involves the light harvesting machinery and the nutritional metabolism in an N supply dependent manner. D. viridis carried out a qualitative rather than a quantitative acclimation of the light harvesting system leading to increased PSII quantum yields. Total internal C decreased as a consequence of either active growth or organic carbon release to the external medium. The latter process allowed photosynthetic electron transport to proceed at higher rates than under normal CO2 conditions, and maintained the internal C:N balance in a narrow range (under N sufficiency). N limitation generally prevented the effects of high CO2, with some exceptions such as the photosynthetic O2 evolution rate.  相似文献   

13.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

14.
Plant responses to elevated CO2 can be modified by many environmental factors, but very little attention has been paid to the interaction between CO2 and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants ( Medicago sativa L. cv. Aragón), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15°C, 14 h photoperiod, and 600 µmol m−2 s−1 photosynthetic photon flux (PPF), using a factorial combination of CO2 concentration (400 µmol mol−1 or 700 µmol mol−1) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25°C, respectively). Elevated CO2 strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO2 also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO2 and low VPD. Moreover, plants grown under elevated CO2 and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO2 and high VPD. Elevated CO2 significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO2 were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO2 as well as considered in the extrapolations of results to a warmer, high-CO2 world.  相似文献   

15.
A simple method is proposed for quantitative evaluation of Stomatal and non-stomatal components of the decline in leaf CO2 uptake during rapid water stress. The changes in leaf conductance were measured during the stress and were used to calculate the photosynthetic rate which would be observed if Stomatal closure were the only cause of the decline in photosynthesis. Photosynthesis-CO2 response curves, determined just before the stress, were used for this calculation. The difference between the calculated and the actual rate is a measure of the non-stomatal effect of water stress.
This analysis was tested on Sinapis alba submitted to rapid and severe water stress by excising leaves or roots. Experiments were performed at saturating light conditions under high (61 Pa), normal (34 Pa) or low (11 Pa) ambient CO 2 pressure. The non-stomatal effect on de-rooted plants reaches a maximum at the beginning of the stress and is dependent on the CO 2 pressure: after 45 min its influence is still about 100°, 70° and 8°, respectively, at high, normal and low CO2. In the excised leaf system in which desiccation was more rapid, the non-stomatal effect accounted for nearly 100° of the assimilation decline whatever the CO2 pressure.  相似文献   

16.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

17.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

18.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

19.
The role of mitochondrial respiration in optimizing photosynthesis was assessed in mesophyll protoplasts of pea ( Pisum sativum L., cv. Arkel) by using low concentrations of oligomycin (an inhibitor of oxidative phosphorylation), antimycin A (inhibits cytochrome pathway of electron transport) and salicylhydroxamic acid (SHAM, an inhibitor of alternative oxidase). All three compounds decreased the rate of photosynthetic O2 evolution in mesophyll protoplasts, but did not affect chloroplast photosynthesis. The inhibition of photosynthesis by these mitochondrial inhibitors was stronger at optimal CO2 (1.0 m M NaHCO3) than that at limiting CO2 (0.1 m M NaHCO3). We conclude that mitochondrial metabolism through both cytochrome and alternative pathways is essential for optimizing photosynthesis at limiting as well as at optimal CO2. The ratios of ATP to ADP in whole protoplast extracts were hardly affected, despite the marked decrease in their photosynthetic rates by SHAM. Similarly, the decrease in the ATP/ADP ratio by oligomycin or antimycin A was more pronounced at limiting CO2 than at optimal CO2. The mitochondrial oxidative electron transport, through both cytochrome and alternative pathways, therefore akppears to be more important than oxidative phosphorylation in optimizing photosynthesis, particularly at limiting CO2 (when ATP demand is expected to be low). Our results also confirm that the alternative pathway has a significant role in contributing to the cellular ATP, when the cytochrome pathway is limited.  相似文献   

20.
The effect of exogenous application of the cytokinin meta -topolin [mT; N6-( meta -hydroxybenzyl)adenine] on artificial senescence of detached wheat leaves ( Triticum aestivum L. cv. Hereward) was studied and compared in leaves senescing under continuous light (100 µmol photons m−2 s−1) and darkness. Senescence-induced deterioration in structure and function of the photosynthetic apparatus was characterized by reduction in chlorophyll content, maximal efficiency of photosystem (PS) II photochemistry ( F v/ F m) and the rate of CO2 assimilation, by increase in the excitation pressure on PSII (1 −  q P) and a level of lipid peroxidation and by modifications in chloroplast ultrastructure. While in darkened leaf segments mT effectively slowed senescence-induced changes in all measured parameters, in light-senescing segments the effect of mT changed into opposite a few days after detachment. We observed an overexcitation of photosynthetic apparatus, as indicated by pronounced increases in the excitation pressure on PSII and in a deepoxidation state of xanthophyll cycle pigments, marked starch grain accumulation in chloroplasts and stimulation of lipid peroxidation in light-senescing leaf segments in mT. Possible mechanisms of acceleration of senescence-accompanying decrease in photosynthetic function and increase in lipid peroxidation during mT influence are discussed. We propose that protective mT action in darkness becomes damaging during artificial senescence in continuous light due to overexcitation of photosynthetic apparatus resulting in oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号