首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three X-linked avirulence genes, vH6, vH9, and vH13 in the Hessian fly, Mayetiola destructor, confer avirulence to Hessian fly resistance genes H6, H9, and H13 in wheat. We used a combination of two- and three-point crosses to determine the order of these genes with respect to each other, the white eye mutation and three X-linked molecular markers, G15-1, 020, and 021, developed from genomic lambda clones, lambda G15-1, lambda 020, and lambda 021. The gene order was determined to be vH9-vH6-G15-1-w-vH13-020-021. In situ hybridization of lambda G15-1, lambda 020, and lambda 021, on the polytene chromosomes of the Hessian fly salivary gland established their orientation on Hessian fly chromosome X1. Based on the size of the Hessian fly genome, and the genetic distances between markers, the relationship of physical to genetic distance was estimated at no more than 300 kb/cM along Hessian fly chromosome X1, suggesting that map-based cloning of these avirulence genes will be feasible.  相似文献   

2.
Resistance in wheat (Triticum aestivum) to the Hessian fly (Mayetiola destructor), a major insect pest of wheat, is based on a gene-for-gene interaction. Close linkage (3 +/- 2 cM) was discovered between Hessian fly avirulence genes vH3 and vH5. Bulked segregant analysis revealed two DNA markers (28-178 and 23-201) within 10 cM of these loci and only 3 +/- 2 cM apart. However, 28-178 was located in the middle of the short arm of Hessian fly chromosome A2 whereas 23-201 was located in the middle of the long arm of chromosome A2, suggesting the presence of severe recombination suppression over its proximal region. To further test that possibility, an AFLP-based genetic map of the Hessian fly genome was constructed. Fluorescence in situ hybridization of 20 markers on the genetic map to the polytene chromosomes of the Hessian fly indicated good correspondence between the linkage groups and the four Hessian fly chromosomes. The physically anchored genetic map is the first of any gall midge species. The proximal region of mitotic chromosome A2 makes up 30% of its length but corresponded to <3% of the chromosome A2 genetic map.  相似文献   

3.
The genotypic interaction between wheat resistance genes H3, H6, H7H8, H9 and virulence genes vH3, vH6, vH7vH8, vH9 of Hessian fly, Mayetiola destructor (Say), was studied in a growth chamber. Results showed that plants homozygous and heterozygous for the H3 gene expressed a high level of resistance against homozygous avirulent and heterozygous larvae carrying the vH3 virulence allele. The H7H8 genes were highly effective in the homozygous condition, but displayed a reduced level of resistance in the heterozygous condition. The H6 and H9 genes showed different levels of resistance against the reciprocal heterozygous larvae (vH6(a)vH6(A) versus vH6(A)vH6(a) and vH9(a)vH9(A) versus vH9(A)vH9(a)). Adults reared from vH6(a)vH6(A) and vH9(a)vH9(A) larvae were all males, consistent with the vH6 and vH9 X-linkage. Plants homozygous for H3, H6, H7H8, and H9 allowed for greater larval survival of heterozygous larvae, which suggests that avirulence to these resistance genes is incompletely dominant. Greater survival of homozygous avirulent larvae on heterozygous plants (H3h3, H6h6, H7h7H8h8, H9h9) suggests incomplete dominance of these wheat genes. Survival of heterozygous along with homozygous virulent larvae would reduce selection pressure for virulence in Hessian fly populations infesting fields of resistant wheat cultivars. This would be expected to slow the increase in frequency of virulence alleles that often results from deployment of resistant cultivars.  相似文献   

4.
5.
The discovery of several new loci for resistance to Hessian fly was reported here. QHf.uga-6AL, the late HR61 was recognized from wheat cultivar 26R61 on the distal end of 6AL with resistance to both biotypes E and vH13. It is the first gene or QTL found on this particular chromosome. QHf.uga-3DL and QHf.uga-1AL, physically assigned to the deletion bins 3DL2-0.27–0.81 and 1AL1-0.17–0.61, respectively, were detected for resistance to biotype vH13. Both QTL should represent new loci for Hessian fly resistance and the latter was detectable only in the late seedling stage when tolerance was evident. In addition, QHf.uga-6DS-C and QHf.uga-1AS had minor effect and were identified from the susceptible parent AGS 2000 for resistance to biotype E and vH13, respectively. QHf.uga-6DS-C is different from the known gene H13 on 6DS and QHf.uga-1AS is different from H9 gene cluster on 1AS. These loci also might be new components of Hessian fly resistance, although their LOD values were not highly significant. The QTL detections were all conducted on a RIL mapping population of 26R61/AGS 2000 with good genome coverage of molecular markers. The strategy used in the current study will serve as a good starting point for the discovery and mapping of resistance genes including tolerance to the pest and the closely linked markers will certainly be useful in selecting or pyramiding of these loci in breeding programs.  相似文献   

6.
Two synthetic hexaploid wheat lines (×Aegilotriticum spp., 2n = 6x = 42, genomes AABBDD), SW8 and SW34, developed from the crosses of the durum wheat cultivar Langdon (Triticum turgidum L. var. durum, 2n = 4x = 28, genomes AABB) with two Aegilops tauschii Cosson accessions (2n = 2x = 14, genome DD), were determined to carry Hessian fly [Mayetiola destructor (Say)] resistance genes derived from the Ae. tauschii parents. SW8 was resistant to the Hessian fly biotype Great Plains (GP) and strain vH13 (virulent to H13). SW34 was resistant to biotype GP, but susceptible to strain vH13. Allelism tests indicated that resistance genes in SW8 and SW34 may be allelic to H26 and H13 or correspond to paralogs at both loci, respectively. H26 and H13 were localized to chromosome 4D and 6D, respectively, in previous studies. Molecular mapping in the present study, however, assigned the H26 locus to chromosome 3D rather than 4D. On the other hand, mapping of the resistance gene in SW34 verified the previous assignment of the H13 locus to chromosome 6D. Linkage analysis and physical mapping positioned the H26 locus to the chromosomal deletion bin 3DL3-0.81–1.00. A linkage map for each of these two resistance genes was constructed using simple sequence repeat (SSR) and target region amplification polymorphism (TRAP) markers.  相似文献   

7.
A new source of resistance to the highly virulent and widespread biotype L of the Hessian fly, Mayetiola destructor (Say), was identified in an accession of tetraploid durum wheat, Triticum turgidum Desf., and was introgressed into hexaploid common wheat, Triticum aestivum L. Genetic analysis and deletion mapping revealed that the common wheat line contained a single locus for resistance, H31, residing at the terminus of chromosome 5BS. H31 is the first Hessian fly-resistance gene to be placed on 5BS, making it unique from all previously reported sources of resistance. AFLP analysis identified two markers linked to the resistance locus. These markers were converted to highly specific sequence-tagged site markers. The markers are being applied to the development of cultivars carrying multiple genes for resistance to Hessian fly biotype L in order to test gene pyramiding as a strategy for extending the durability of deployed resistance.Communicated by J. Dvorak  相似文献   

8.
Identification of RAPD markers for 11 Hessian fly resistance genes in wheat   总被引:7,自引:0,他引:7  
 The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor (Say)]. We used a set of near-isogenic wheat lines, each carrying a resistance gene at 1 of 11 loci (H3, H5, H6, H9, H10, H11, H12, H13, H14, H16 or H17) and developed by backcrossing to the Hessian fly-susceptible wheat cultivar ‘Newton’. Using genomic DNA of these 11 lines and ‘Newton’, we have identified 18 randomly amplified polymorphic DNA (RAPD) markers linked to the 11 resistance genes. Seven of these markers were identified by denaturing gradient gel electrophoresis and the others by agarose gel electrophoresis. We confirmed linkage to the Hessian fly resistance loci by cosegregation analysis in F2 populations of 50–120 plants for each different gene. Several of the DNA markers were used to determine the presence/absence of specific Hessian fly resistance genes in resistant wheat lines that have 1 or possibly multiple genes for resistance. The use of RAPD markers presents a valuable strategy for selection of single and combined Hessian fly resistance genes in wheat improvement. Received: 20 March 1996 / Accepted: 6 September 1996  相似文献   

9.
Plant pathogen effectors encoded by Avirulence (Avr) genes benefit the pathogen by promoting colonization and benefit plants that have a matching resistance (R) gene by constituting a signal that triggers resistance. The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), resembles a plant pathogen in showing R/Avr interactions. Because of these interactions, a wheat plant with the H13 resistance gene can be resistant or susceptible depending on the genotype of the larva that attacks the plant, being resistant if attack comes from a larva with a functional vH13 gene, but susceptible if attack comes from a larva with a non‐functional vH13 gene. In this study we asked: does this susceptible interaction involving plants with H13 look like susceptible interactions with plants lacking H13? Possibly, the H13 plant attacked by a larva with a non‐functional vH13 is induced to partial rather than complete resistance. Or the larva, lacking its vH13‐encoded effector, is compromised in its ability to induce susceptibility, which includes forcing the plant to create a gall nutritive tissue. Responses of epidermal cells to larval attack were explored using imaging techniques (light microscopy, scanning and transmission electron microscopy). Whole‐organism responses were investigated by measuring the growth of plants and larvae. No evidence was found for partial resistance responses by H13 plants or for a compromise in the ability of vH13 loss‐of‐function larvae to induce susceptibility. It appears that disrupting vH13 function is sufficient for overcoming the induced resistance mediated by the H13 gene.  相似文献   

10.
H13 is inherited as a major dominant resistance gene in wheat. It was previously mapped to chromosome 6DL and expresses a high level of antibiosis against Hessian fly (Hf) [Mayetiola destructor (Say)] larvae. The objective of this study was to identify tightly linked molecular markers for marker-assisted selection in wheat breeding and as a starting point toward the map-based cloning of H13. Fifty-two chromosome 6D-specific microsatellite (simple sequence repeat) markers were tested for linkage to H13 using near-isogenic lines Molly (PI 562619) and Newton-207, and a segregating population consisting of 192 F2:3 families derived from the cross PI 372129 (Dn4) × Molly (H13). Marker Xcfd132 co-segregated with H13, and several other markers were tightly linked to H13 in the distal region of wheat chromosome 6DS. Deletion analysis assigned H13 to a small region closely proximal to the breakpoint of del6DS-6 (FL 0.99). Further evaluation and comparison of the H13-linked markers revealed that the same chromosome region may also contain H23 in KS89WGRC03, an unnamed H gene (HWGRC4) in KS89WGRC04, the wheat curl mite resistance gene Cmc4, and a defense response gene Ppo for polyphenol oxidase. Thus, these genes comprise a cluster of arthropod resistance genes. Marker analysis also revealed that a very small intercalary chromosomal segment carrying H13 was transferred from the H13 donor parent to the wheat line Molly.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

11.
Genetic resistance in wheat, Triticum aestivum L., is the most efficacious method for control of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). However, because of the appearance of new genotypes (biotypes) in response to deployment of resistance, field collections of Hessian fly need to be evaluated on a regular basis to provide breeders and producers information on the efficacy of resistance (R) genes with respect to the genotype composition of Hessian fly in regional areas. We report here on the efficacy of 21 R genes in wheat to field collections of Hessian fly from the southeastern United States. Results documented that of the 21 R genes evaluated only five would provide effective protection of wheat from Hessian fly in the southeastern United States. These genes were H12, H18, H24, H25, and H26. Although not all of the 33 identified R genes were evaluated in the current study, these results indicate that identified genetic resistance to protect wheat from Hessian attack in the southeastern United States is a limited resource. Historically, R genes for Hessian fly resistance in wheat have been deployed as single gene releases. Although this strategy has been successful in the past, we recommend that in the future deployment of combinations of highly effective previously undeployed genes, such as H24 and H26, be considered. Our study also highlights the need to identify new and effective sources of resistance in wheat to Hessian fly if genetic resistance is to continue as a viable option for protection of wheat in the southeastern United States.  相似文献   

12.

Key message

Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency.

Abstract

Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
  相似文献   

13.
Twenty-three Hessian fly, Mayetiola destructor (Say), populations collected in the southeastern (Alabama and Mississippi), midwestern (Indiana), and northwestern (Idaho and Washington) United States from 1995 to 1999 were evaluated for biotype composition based on response to Hessian fly resistance genes H3, H5, H6, and H7H8 in wheat, Triticum aestivum L. Biotypes L and O, combined, made up at least 60% of all Alabama populations. Biotype L was predominant in the northern third of Alabama and biotype O in the southern two-thirds of the state. Based on biotype data, wheat cultivars with H7H8 resistance should be highly effective in central and southern Alabama. Fifty-four percent of the Mississippi population consisted of biotype L, and the remaining virulent biotypes (B, D, E, G, J, and O) ranged in frequency from 1 to 17%. The Mississippi population also contained 4% of the avirulent biotype GP. Only biotypes D and L were found in Indiana populations, but biotype L was predominant. Hessian fly populations from Idaho and Washington contained one or more of the virulent biotypes D-H, J, and L-O; however, only biotypes E, F, and G occurred at frequencies > 12%. The avirulent biotype GP made up 25-57% of Idaho and Washington populations, a much higher percentage than found in populations from the eastern United States. Although the highest level of virulence in Idaho and Washington populations was found to resistance genes H3 and H6, the frequency of biotype GP would indicate that the currently deployed gene H3 would provide a moderate to high level of resistance, depending on location. Nine of the populations, plus populations collected from the mid-Atlantic state area in 1989 and 1996, also were tested against the wheat cultivar 'INW9811' that carries H13 resistance to Hessian fly biotype L and two Purdue wheat lines with unidentified genes for resistance. The H13 resistance in INW9811 was highly effective against all populations tested from the eastern and northwestern U.S. wheat production areas, except Maryland and Virginia. Population studies also indicated that wheat line CI 17960-1-1-2-4-2-10 likely carries the H13 resistance gene, based on the similarity of its response and that of INW9811 to eight fly populations. Continued monitoring of biotype frequency in Hessian fly populations is required for optimal deployment and management of resistance genes in all wheat production areas.  相似文献   

14.
Hessian fly, Mayetiola destructor (Say), is the most important insect pest of wheat in Morocco, where host plant resistance has been used successfully for control. Our objective was to determine the frequency of Hessian fly virulence on H5, H13 and H22 resistance genes. Five Hessian fly populations from the principal cereal‐growing regions in Morocco were studied. The variability in percentage of susceptible plants across Hessian fly populations was highly significant (P < 0.01), indicating differences in virulence frequencies. Plants with the H13 gene had the lowest percentage of susceptible plants, 1.77 and 1.51%, when infested with Hessian flies from Fes and Marchouch, respectively. A low level of virulence to H22 was detected in Fes, Abda and Marchouch populations, 1.87, 1.54 and 1.99% susceptible plants, respectively. The level of virulence to H5 was low in all the five populations. The Beni Mellal population gave the highest percentage of susceptible plants carrying H13 and H22 genes, 6.43 and 7.28%, respectively. The size of live larvae on susceptible plants of the three cultivars carrying H5, H13 and H22 was similar to that of the susceptible check, indicating that a true virulence (biotype) is developing in Hessian fly populations in Morocco. Thus, continuous monitoring of the development of Hessian fly biotypes is essential for optimal deployment of resistance genes.  相似文献   

15.
In Tunisia, the Hessian fly Mayetiola destructor Say is a major pest of durum wheat (Triticum durum Desf.) and bread wheat (T. aestivum L.). Genetic resistance is the most efficient and economical method of control of this pest. To date, 31 resistance genes, designated H1-H31, have been identified in wheat. These genes condition resistance to the insect genes responsible for virulence. Using wheat cultivars differing for the presence of an individual Hessian fly resistance gene and random amplified polymorphic DNA (RAPD) analysis, we have identified a polymorphic 386-bp DNA marker (Xgmib1-1A.1) associated with the H11 Hessian fly resistance gene. Blast analysis showed a high identity with a short region in the wild wheat (T. monococcum) genome, adjacent to the leaf rust resistance Lr10 gene. A genetic linkage was reported between this gene (Lr10) and Hessian fly response in wheat. These data were used for screening Hessian fly resistance in Tunisian wheat germplasm. Xgmib1-1A.1-like fragments were detected in four Tunisian durum and bread wheat varieties. Using these varieties in Hessian fly breeding programs in Tunisia would be of benefit in reducing the damage caused by this fly.  相似文献   

16.
H32 is a newly identified gene that confers resistance to the highly pervasive Biotype L of the Hessian fly [ Mayetiola destructor (Say)]. The gene was identified in a synthetic amphihexaploid wheat, W-7984, that was constructed from the durum ‘Altar 84’ and Aegilops tauschii. This synthetic wheat is one of the parents of the marker-rich ITMI population, which consists of 150 recombinant inbred lines (RILs) derived by single-seed descent from a cross with ‘Opata 85’. Linkage analysis of the H32 locus in the ITMI population placed the gene between flanking microsatellite (SSR) markers, Xgwm3 and Xcfd223, at distances of 3.7 and 1.7 cM, respectively, on the long arm of chromosome 3D. The Xgwm3 primers amplified codominant SSR alleles, a 72 bp fragment linked in coupling to the resistance allele and an 84 bp fragment linked in repulsion. Primers for the SSR Xcfd223 amplified a 153 bp fragment from the resistant Synthetic parent and a 183 bp fragment from the susceptible Opata line. Deletion mapping of the flanking Xgwm3 and Xcfd223 markers located them within the 3DL-3 deletion on the distal 19% of the long arm of chromosome 3D. This location is at least 20 cM proximal to the reported 3DL location of H24, a gene that confers resistance to Biotype D of the Hessian fly. Tight linkage of the markers will provide a means of detecting H32 presence in marker-assisted selection and gene pyramiding as an effective strategy for extending durability of deployed resistance.  相似文献   

17.
18.
Xu SS  Chu CG  Harris MO  Williams CE 《Génome》2011,54(1):81-89
Near-isogenic lines (NILs) are useful for plant genetic and genomic studies. However, the strength of conclusions from such studies depends on the similarity of the NILs' genetic backgrounds. In this study, we investigated the genetic similarity for a set of NILs developed in the 1990s to study gene-for-gene interactions between wheat (Triticum aestivum L.) and the Hessian fly (Mayetiola destructor (Say)), an important pest of wheat. Each of the eight NILs carries a single H resistance gene and was created by successive backcrossing for two to six generations to susceptible T. aestivum 'Newton'. We generated 256 target region amplification polymorphism (TRAP) markers and used them to calculate genetic similarity, expressed by the Nei and Li (NL) coefficient. Six of the NILs (H3, H5, H6, H9, H11, and H13) had the highly uniform genetic background of Newton, with NL coefficients from 0.97 to 0.99. However, genotypes with H10 or H12 were less similar to Newton, with NL coefficients of 0.86 and 0.93, respectively. Cluster analysis based on NL coefficients and pedigree analysis showed that the genetic similarity between each of the NILs and Newton was affected by both the number of backcrosses and the genetic similarity between Newton and the H gene donors. We thus generated an equation to predict the number of required backcrosses, given varying similarity of donor and recurrent parent. We also investigated whether the genetic residues of the donor parents that remained in the NILs were related to linkage drag. By using a complete set of 'Chinese Spring' nullisomic-tetrasomic lines, one third of the TRAP markers that showed polymorphism between the NILs and Newton were assigned to a specific chromosome. All of the assigned markers were located on chromosomes other than the chromosome carrying the H gene, suggesting that the genetic residues detected in this study were not due to linkage drag. Results will aid in the development and use of near-isogenic lines for studies of the functional genomics of wheat.  相似文献   

19.
Resistance gene H26, derived from Aegilops tauschii Coss., is one of the most effective R genes against the Hessian fly [Mayetiola destructor (Say)], an important pest of wheat (Triticum aestivum L.). Using a limited number of PCR-based molecular markers a previous study mapped H26 to the wheat chromosomal deletion bin 3DL3-0.81-1.00. The objectives of this study were to saturate the chromosomal region harboring H26 with newly developed PCR-based markers and to investigate the collinearity of this wheat chromosomal region with rice (Oryza sativa L.) and Brachypodium distachyon genome. A population of 96 F2 individuals segregating at the H26 gene locus was used for saturation mapping. All wheat ESTs assigned to the deletion bin 3DL3-0.81-1.00 were used to design STS (sequence tagged site) primers. The wheat ESTs mapped near H26 were further used to BLAST rice and B. distachyon genomic sequences for comparative mapping. To date, 26 newly developed STS markers have been mapped to the chromosomal region spanning the H26 locus. Two of them were mapped 1.0 cM away from the H26 locus. Comparative analysis identified genomic regions on rice chromosome 1 and Brachypodium Super contig 13 which are collinear with the genomic region spanning the H26 locus within the distal region of 3DL. The newly developed STS markers closely linked to H26 will be useful for mapped-based cloning of H26 and marker-assisted selection of this gene in wheat breeding. The results will also enhance understanding of this chromosomal region which contains several other Hessian fly resistance genes. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号