首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We formulated a mathematical model in order to study the joint influence of demographic and genetic processes on metapopulation viability. Moreover, we explored the influence of habitat structure, matrix quality and disturbance on the interplay of these processes. We showed that the conditions that allow metapopulation persistence under the synergistic action of genetic and demographic processes depart significantly from predictions based on a mere superposition of the effects of each process separately. Moreover, an optimal dispersal rate exists that maximizes the range of survival rates of dispersers under which metapopulation persists and at the same time allows the largest sustainable patch removal and patch‐size reduction. The relative impact of patch removal and patch‐size reduction depends both on matrix quality and the dispersal strategy of the species: metapopulation persistence is more affected by patch‐size reduction (patch removal) for low (high)‐dispersing species, in presence of a low (high) quality matrix. Avoidance of inbreeding, through increased dispersal when the rate of inbreeding in a population is large, has positive effects on low‐dispersing species, but impairs the persistence of high‐dispersing species. Finally, size heterogeneity between patches largely influences metapopulation dynamics; the presence of large patches, even at the expense of other patches being smaller, can have positive effects on persistence in particular for species of low dispersing ability.  相似文献   

2.
Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.  相似文献   

3.
《Ecological Complexity》2007,4(1-2):42-47
In both percolation models and metapopulation (habitat patch) models, habitat pattern is assumed to be fixed and binary (matrix is unsuitable). In percolation models movement (dispersal) is strictly to neighbors whereas in metapopulation models movement is not explicitly considered but is factored into the colonization coefficients. Models with explicit dispersal also typically treat habitat as binary. Disturbance, if considered, is usually assumed to affect only preferred habitat. In this study, a dispersal kernel is assumed with spatially explicit populations and habitat, and the matrix is assumed to be affected by disturbances or fluctuating environmental conditions that open sites for dispersers (e.g., seeds) on a temporary basis. These ephemeral habitat patches are shown to act as stepping stones between preferred habitat. The consequence of stepping stones in this case is an increase in persistence when remnant preferred habitat is rare, and the conversion of extinction scenarios into persistence scenarios in some cases. The utilization of stepping stones by a species leads to nonintuitive relationships between observed abundance and habitat preference that could cause conservation strategies to backfire.  相似文献   

4.
Animal dispersal and subsequent settlement is a key process in the life history of many organisms, when individuals use demographic and environmental cues to target post-dispersal habitats where fitness will be highest. To investigate the hypothesis that environmental disturbance (habitat fragmentation) may alter these cues, we compared dispersal patterns of 60 red squirrels (Sciurus vulgaris) in three study sites that differ in habitat composition and fragmentation. We determined dispersal distances, pre- and post-dispersal habitat types and survival using a combination of capture–mark–recapture, radio-tracking and genetic parentage assignment. Most (75%) squirrels emigrated from the natal home range with mean dispersal distance of 1,014 ± 925 m (range 51–4,118 m). There were no sex-related differences in dispersal patterns and no differences in average dispersal distance, and the proportion of dispersers did not differ between sites. In one of the sites, dispersers settled in patches where density was lower than in the natal patch. In the least fragmented site, 90% of animals settled in the natal habitat type (habitat cuing) against 44–54% in the more strongly fragmented sites. Overall, more squirrels settled in the natal habitat type than expected based on habitat availability, but this was mainly due to individuals remaining within the natal wood. In the highly fragmented landscape, habitat cuing among emigrants did not occur more frequently than expected. We concluded that increased habitat fragmentation seemed to reduce reliable cues for habitat choice, but that dispersing squirrels settled in patches with lower densities of same-sex animals than at the natal home range or patch, independent of degree of fragmentation.  相似文献   

5.
Species associated with transient habitats need efficient dispersal strategies to ensure their regional survival. Using a spatially explicit metapopulation model, we studied the effect of the dispersal range on the persistence of a metapopulation as a function of the local population and landscape dynamics (including habitat patch destruction and subsequent regeneration). Our results show that the impact of the dispersal range depends on both the local population and patch growth. This is due to interactions between dispersal and the dynamics of patches and populations via the number of potential dispersers. In general, long-range dispersal had a positive effect on persistence in a dynamic landscape compared to short-range dispersal. Long-range dispersal increases the number of couplings between the patches and thus the colonisation of regenerated patches. However, long-range dispersal lost its advantage for long-term persistence when the number of potential dispersers was low due to small population growth rates and/or small patch growth rates. Its advantage also disappeared with complex local population dynamics and in a landscape with clumped patch distribution.  相似文献   

6.
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

7.
Rare species are important targets for biodiversity conservation efforts because rarity often equates to small populations and increased endangerment. Rare species are prone to stochastic extinction events and may be particularly susceptible to catastrophes. Therefore, understanding how rare species respond to disturbances is critical for evaluating extinction risk and guiding conservation managers. Population viability analyses (PVAs) are essential for assessing rare species' status yet they seldom consider catastrophic events. Accordingly, we present a PVA of a rare tropical epiphyte, Lepanthes caritensis (Orchidaceae), under simulated disturbance regimes to evaluate its demographics and extinction risk. We aimed to test how demographic models incorporating catastrophes affect population viability estimates. Our goal was to better guide management of these orchids and other rare plants. Results revealed L. caritensis numbers have declined recently, but projected growth rates indicated that most subpopulations should increase in size if undisturbed. Still, projection models show that moderate catastrophes reduce growth rates, increase stochasticity in subpopulation sizes, and elevate extinction risk. Severe catastrophes had a more pronounced effect in simulations; growth rates fell below replacement level, there was greater variation in projected population sizes, and extinction risk was significantly higher. PVAs incorporating periodic catastrophes indicate that rare species may have greater extinction probabilities than standard models suggest. Thus, precautionary conservation measures should be taken in disturbance prone settings and we encourage careful monitoring after environmental catastrophes. Future rare plant PVAs should incorporate catastrophes and aim to determine if rescue and reintroduction efforts are necessary after disturbances to insure long-term population viability.  相似文献   

8.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

9.
Background: There is limited understanding about bird dispersal behaviour and seedling distribution of endangered tree species in patchy environments, although these processes are important for plant species persistence.

Aims: We tested how patch features affected bird behaviour and seed dispersal, and thus seedling distribution of the endangered Chinese yew tree (Taxus chinensis).

Methods: In the present study, we combined field data of bird dispersal behaviour and GIS-based information to elucidate the influence of spatial features of habitat patches on bird dispersal behaviour, and the resulting effects on the seedling distribution of the endangered Chinese yew in two patchy habitats.

Results: Our results showed that the only seed source patch could attract eight bird species for dispersal at the two sites. Post-foraging movements of bird dispersers was strongly related to both topography and the relative locations of habitat patches. Yew seedlings aggregated only at the seed source and bamboo recruitment patches, which was affect by both the spatial distribution of recruitment patches and patch use by dispersers.

Conclusions: Our results emphasise that bamboo patches in both patchy environments provide the necessary conditions for germination of yew seeds, and the post-foraging behaviour of dispersers determines seed deposited in these patches. Our study highlights the importance of the dispersal behaviour of frugivorous birds in the successful regeneration and colonisation of yew populations in patchy habitats.  相似文献   

10.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

11.
The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape-dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent.  相似文献   

12.
In this paper, we predict the outcome of dispersal evolution in metapopulations based on the following assumptions: (i) population dynamics within patches are density-regulated by realistic growth functions; (ii) demographic stochasticity resulting from finite population sizes within patches is accounted for; and (iii) the transition of individuals between patches is explicitly modelled by a disperser pool. We show, first, that evolutionarily stable dispersal rates do not necessarily increase with rates for the local extinction of populations due to external disturbances in habitable patches. Second, we describe how demographic stochasticity affects the evolution of dispersal rates: evolutionarily stable dispersal rates remain high even when disturbance-related rates of local extinction are low, and a variety of qualitatively different responses of adapted dispersal rates to varied levels of disturbance become possible. This paper shows, for the first time, that evolution of dispersal rates may give rise to monotonically increasing or decreasing responses, as well as to intermediate maxima or minima.  相似文献   

13.
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate, extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required for viable management of such species in the Florida scrub ecosystem.  相似文献   

14.
Dispersal between habitat patches may be important for the long-term persistence of populations. We conducted a mark–release–recapture study and analysed the dispersal pattern in the scarce heath butterfly inhabiting a network of suitable habitat patches using stepwise logistic regression (SLR) and the Virtual Migration (VM) model. We also analysed the influence of different types of matrices. We found that the majority of the recaptured butterflies remained within the patch where they were originally caught. However, dispersal between patches did occur and both the SLR analysis and the VM model indicated that the migration pattern was significantly associated with patch area and its level of isolation. The SLR model also showed that there was a positive association between immigration rate and tree density, supporting earlier observations that this species prefers semi-open habitat. We discuss the use of SLR versus the VM model to analyse recapture data in dispersal studies. This system is not at equilibrium, as a number of the most important patches in the network are continuously being lost due to afforestation and a number of populations are facing deterministic extinction. This increases the risk of a chain reaction of local extinctions, which may cause a collapse of the whole system.  相似文献   

15.
The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations.  相似文献   

16.
Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.  相似文献   

17.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

18.
We investigate a mutualistic metacommunity where the strength of the mutualistic interaction between species is measured by the extent to which the presence of one species on a patch either reduces the extinction rate of the others present on the same patch or increases their ability to colonize other patches. In both cases, a strong enough mutualism enables all species to persist at habitat densities where they would all be extinct in the absence of the interaction. However, a mutualistic interaction that enhances colonization enables the species to persist at lower habitat density than one that suppresses extinction. All species abruptly go extinct (catastrophe) when the habitat density is decreased infinitesimally below a critical value. A comparison of the mean field or spatially implicit case with unrestricted dispersal and colonization to all patches in the system with a spatially explicit case where dispersal is restricted to the immediate neighbours of the original patch leads to the intriguing conclusion that restricted dispersal can be favourable for species that have a beneficial effect on each other when habitat conditions are adverse. When the mutualistic interaction is strong enough, the extinction threshold or critical amount of habitat required for the persistence of all species is lower when the dispersal is locally restricted than when unrestricted ! The persistence advantage for all species created by the mutualistic interaction increases substantially with the number of species in the metacommunity, as does the advantage for restricted dispersal over global dispersal.  相似文献   

19.
 We study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite) number of local populations living in patches of habitable environment. Dispersal between patches is modelled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for catastrophe rates that increase with decreasing local population size. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur. Received: 10 November 2000 / Revised version: 13 February 2002 / Published online: 17 July 2002  相似文献   

20.
Catastrophic events, like oil spills and hurricanes, occur in many marine systems. One potential role of marine reserves is buffering populations against disturbances, including the potential for disturbance-driven population collapses under Allee effects. This buffering capacity depends on reserves in a network providing rescue effects, setting up a tradeoff where reserves need to be connected to facilitate rescue, but also distributed in space to prevent simultaneous extinction. We use a set of population models to examine how dispersal ability and the disturbance regime interact to determine the optimal reserve spacing. We incorporate fishing in a spatially-explicit model to understand the effect of objective choice (e.g. conservation versus fisheries yield) on the optimal reserve spacing. We show that the optimal spacing between reserves increases when accounting for catastrophes with larger spacing needed when Allee effects interact with catastrophes to increase the probability of extinction. We also show that classic tradeoffs between conservation and fishing objectives disappear in the presence of catastrophes. Specifically, we found that at intermediate levels of disturbance, it is optimal to spread out reserves in order to increase both population persistence and to maximize spillover into non-reserve areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号