首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Porcine bioprosthetic heart valves degenerate and fail mechanically through a mechanism that is currently not well understood. It has been suggested that damage to the elastin component of prosthetic valve cusps could be responsible for changes in the mechanical function of the valve that would predispose it to increased damage and ultimate failure. To determine whether damage to elastin can produce the structural and mechanical changes that could initiate the process of bioprosthetic valve degeneration, we developed an elastase treatment protocol that fragments elastin and negates its mechanical contribution to the valve tissue. Valve cusps were mechanically tested before and after digestion to measure the mechanical changes resulting from elastin damage. Elastin damage produced a decrease in radial and circumferential extensibility (from 43 to 18% strain radially and 12 to 7% strain circumferentially), with a slight increase in stiffness (1.3-2.6kN/m for radial and 10.6-11.9kN/m for circumferential directions). Digestions with trypsin, which does not cleave elastin, confirmed that the changes in mechanics of the circumferential samples were likely due to the nonspecific removal of proteoglycans by elastase, while the changes in the radial samples were indeed due to elastin damage. Removing the mechanical contribution of elastin alters the mechanical behavior of the aortic valve cusp, primarily in the radial direction. This finding implies that damage to elastin will distend the cusps, reduce their extensibility, and increase their stiffness. Damage to elastin may therefore contribute to the degeneration and failure of prosthetic valves.  相似文献   

2.
The charge structure and ionic interactions of elastin prepared from the pig thoracic aorta by acid, alkali, or CNBr extraction have been investigated by potentiometric titration and radiotracer techniques. The number of charged groups was consistent with the amino acid composition, comparable to elastin from other sources and insensitive to the method of preparation. The enthalpies of ionization of the basic groups were comparable for those previously found for proteins but those of the acidic groups were higher. Ionic interactions were predominantly electrostatic although a strong affinity for chloride ions was noted. Changes in ionic interactions as the elastin was stretched had a similar effect to an increase in the apparent fixed charge density of the tissue. Mechanical strain altered the protonation of the elastin and the pK of the carboxyl groups. Conversely, the conformation of the elastin network varied with ionic strength and pH, being particularly sensitive to the degree of ionization of the more basic groups and with the ionic strength and anion composition of the medium. We speculate that strain induced changes in the conformation of elastin altering its reactivity towards lipids, ions or matrix macromolecules or changes in its mechanical properties resulting from changes in its ionic environment may be of physiological or pathological importance.  相似文献   

3.
Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin‐like sequences as a strategy to rationally increase the strength of elastin‐based materials while maintaining extensibility. We demonstrate a thermo‐responsive phase separation and spontaneous colloid‐like droplet formation from silk‐elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross‐linked materials. Silk‐elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin‐only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693–703, 2016.  相似文献   

4.
Understanding the mechanical environment of each component within the arterial wall is fundamental for understanding vascular growth and remodelling and for engineering artificial vascular conduits. We have investigated the mechanical status of arterial elastin by measuring the circumferential mechanical properties of purified elastin as function of position along the descending thoracic aorta of the pig. The tensile circumferential secant modulus, E(sec), measured in uniaxial mechanical tests, increased 30% (P<0.001), from a value of 0.88 MPa in the proximal tissue near the aortic arch to 1.14 MPa in the distal tissue near the diaphragm, indicating the stiffness of the elastin sample increased with position. Breaking stress was 54% higher in the distal tissue compared to the proximal (P<0.001), but the breaking stretch ratio did not change. E(sec) correlated with the ratio of radius to wall thickness measured in the no load state, r(nl)/h(nl), suggesting that the rise in stiffness was linked to ring morphology. The higher stiffness and strength of the distal tissue might be explained by a higher proportion of circumferentially oriented fibres in the distal tissue, which would indicate that the elastin meshwork in the thoracic aorta may become progressively anisotropic with distance from the heart. The ratio r(nl)/(h(nl)E (sec))rose only 7%, which suggests that the in vivo circumferential strain on the elastin may be constant along the pig thoracic aorta. The positional variation in elastin's properties should be taken into account in mechanical studies on purified elastin and in mathematical models of aorta mechanics.  相似文献   

5.
6.
Elastic fibrils were isolated, as electron microscopically homogeneous preparations, from salmon (Salmo salar) and trout (Salmo gairdneri) bulbus arteriosus by extraction of other tissue components with guanidinium hydrochloride. The preparations exhibited compositions widely at variance with that of bovine elastin, the differences including both the overall concentration and the relative proportions of the crosslinks. Absorption and fluorescence spectroscopy ruled out the presence of tyrosine-derived crosslinks. The wide-angle X-ray diffraction pattern of the salmonid preparations showed broad reflections corresponding to spacings of 9.8, 4.5, and 2.2 Å, similar to bovine elastin. The mechanical behavior of the salmon preparation was characterized by a linear response to stress, with minimal hysteresis, a Young's modulus of 5.5 × 105 N m?2, and a breaking strain of 1.5.  相似文献   

7.
Electrospun tubular conduit (4 mm inner diameter) based on blends of polydioxanone (PDS II®) and proteins such as gelatin and elastin having a spatially designed trilayer structure was prepared for arterial scaffolds. SEM analysis of scaffolds showed random nanofibrous morphology and well‐interconnected pore network. Due to protein blending, the fiber diameter was reduced from 800–950 nm range to 300–500 nm range. Fourier‐transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results confirmed the blended composition and crystallinity of fibers. Pure PDS scaffold under hydrated state exhibited a tensile strength of 5.61 ± 0.42 MPa and a modulus of 17.11 ± 1.13 MPa with a failure strain of 216.7 ± 13%. The blending of PDS with elastin and gelatin has decreased the tensile properties. A trilayer tubular scaffold was fabricated by sequential electrospinning of blends of elastin/gelatin, PDS/elastin/gelatin, and PDS/gelatin (EG/PEG/PG) to mimic the complex matrix structure of native arteries. Under hydrated state, the trilayer conduit exhibited tensile properties (tensile strength of 1.77 ± 0.2 MPa and elastic modulus of 5.74 ± 3 MPa with a failure strain of 75.08 ± 10%) comparable to those of native arteries. In vitro degradation studies for up to 30 days showed about 40% mass loss and increase in crystallinity due to the removal of proteins and “cleavage‐induced crystallization” of PDS. Biotechnol. Bioeng. 2009; 104: 1025–1033. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
PurposeThe accuracy of biomechanical models is predicated on the realism by which they represent their biomechanical tissues. Unfortunately, most models use phenomenological ligament models that neglect the behaviour in the failure region. Therefore, the purpose of this investigation was to test whether a mechanistic model of ligamentous tissue portrays behaviour representative of actual ligament failure tests.ModelThe model tracks the time-evolution of a population of collagen fibres in a theoretical ligament. Each collagen fibre is treated as an independent linear cables with constant stiffness. Model equations were derived by assuming these fibres act as a continuum and applying a conservation law akin to Huxley’s muscle model. A breaking function models the rate of collagen fibre breakage at a given displacement, and was chosen to be a linear function for this preliminary analysis.MethodsThe model was fitted to experimental average curves for the cervical anterior longitudinal ligament. In addition, the model was cyclically loaded to test whether the tissue model behaves similarly.ResultsThe model agreed very well with experiment with an RMS error of 14.23 N and an R2 of 0.995. Cyclic loading exhibited a reduction in force similar to experimental data.Discussion and conclusionThe proposed model showcases behaviour reminiscent of actual ligaments being strained to failure and undergoing cyclic load. Future work could incorporate viscous effects, or validate the model further by testing it in various loading conditions. Characterizing the breaking function more accurately would also lead to better results.  相似文献   

9.
Feeding behaviour and preferences of brent geese, Branta b. bernicla were observed on pastures of different sward lengths and nitrogen contents. On swards of 2.0-6.0 cm captive geese took larger bites and had a higher intake rate when feeding on 6-cm swards than when feeding on shorter ones. In the field wild geese chose 6-cm swards in preference to both shorter and longer ones. For unfertilized pastures there was a strong negative relationship between nitrogen content and sward height: 11-cm swards contained 2.8% nitrogen, 3.5-cm swards 4.2% nitrogen. Application of 75 kg N ha-1 organically based fertilizer at the end of October eliminated this relationship between nitrogen content and sward height, swards of all heights then having a mean content of 4.1% N. On fertilized plots the geese preferred swards longer than 6 cm with no indication of a decrease in preference up to the maximum height investigated, 16 cm. Breaking strain of grass laminae was measured to give an indication of the proportion of strengthening tissues in the leaves and hence their digestibility. Apical laminae from longer swards had a higher breaking strain than those from shorter swards. Unfertilized swards had a higher breaking strain than fertilized swards but the difference in breaking strain between long and short swards was the same on fertilized and control treatments. These results are discussed in relation to the forage maturation hypothesis and are interpreted as indicating that the primary constraint on maximizing energy intake rates is not the reduced energy digestibility of older foliage but the reduced nitrogen content in the higher-biomass swards. We conclude that it is the balance between maximizing energy intake and nitrogen absorption rates which results in the observed preference for intermediate-height swards.  相似文献   

10.
We present a theoretical approach to study the onset of failure localization into cracks in arterial wall. The arterial wall is a soft composite comprising hydrated ground matrix of proteoglycans reinforced by spatially dispersed elastin and collagen fibers. As any material, the arterial tissue cannot accumulate and dissipate strain energy beyond a critical value. This critical value is enforced in the constitutive theory via energy limiters. The limiters automatically bound reachable stresses and allow examining the mathematical condition of strong ellipticity. Loss of the strong ellipticity physically means inability of material to propagate superimposed waves. The waves cannot propagate because material failure localizes into cracks perpendicular to a possible wave direction. Thus, not only the onset of a crack can be analyzed but also its direction. We use the recently developed constitutive theories of the arterial wall including 8 and 16 structure tensors to account for the fiber dispersion. We enhance these theories with energy limiters. We examine the loss of strong ellipticity in uniaxial tension and pure shear in circumferential and axial directions of the arterial wall. We find that the vanishing longitudinal wave speed predicts the appearance of cracks in the direction perpendicular to tension. We also find that the vanishing transverse wave speed predicts the appearance of cracks in the the direction inclined (non-perpendicular) to tension. The latter result is counter-intuitive yet it is supported by recent experimental observations.  相似文献   

11.
Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orie ntations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.  相似文献   

12.
The tight-skin (Tsk) and beige (bg) mutants of the C57B1/6J strain of mouse spontaneously develop air-space enlargement reminiscent of human emphysema. To determine if this enlargement is accompanied by matrix destruction, as in the human disease, we examined the elastin and collagen matrices of the lungs of both mutants. The ultrastructure of these matrix components was separately visualized by scanning electron microscopy following controlled alkali digestion, which preserves collagen, and formic acid digestion, which enables visualization of elastin. Significant elastin destruction suggestive of an elastolytic process was observed in the lungs of Tsk mice. Thickening of elastin lamellae was observed in the lungs of bg mice, suggesting that congenital matrix remodeling may underlie air-space enlargement in this strain.  相似文献   

13.
Pulmonary emphysema and vessel wall aneurysms are diseases characterized by elastolytic damage to elastin fibers that leads to mechanical failure. To model this, neonatal rat aortic smooth muscle cells were cultured, accumulating an extracellular matrix rich in elastin, and mechanical measurements were made before and during enzymatic digestion of elastin. Specifically, the cells in the cultures were killed with sodium azide, the cultures were lifted from the flask, cut into small strips, and fixed to a computer-controlled lever arm and a force transducer. The strips were subjected to a broadband displacement signal to study the dynamic mechanical properties of the samples. Also, quasi-static stress-strain curves were measured. The dynamic data were fit to a linear viscoelastic model to estimate the tissues' loss (G) and storage (H) modulus coefficients, which were evaluated before and during 30 min of elastase treatment, at which point a failure test was performed. G and H decreased significantly to 30% of their baseline values after 30 min. The failure stress of control samples was approximately 15 times higher than that of the digested samples. Understanding the structure-function relationship of elastin networks and the effects of elastolytic injury on their mechanical properties can lead to the elucidation of the mechanism of elastin fiber failure and evaluation of possible treatments to enhance repair in diseases involving elastolytic injury.  相似文献   

14.
Tissue remodeling is an adaptive response to mechanical tension in the lung. However, the role of pulmonary fibroblasts in this response has not been well characterized. This study investigates the influence of extracellular matrix on the response of fibroblasts to mechanical strain. Cells were cultured on flexible-bottom surfaces coated with fibronectin, laminin, or elastin and exposed to strain. Under these conditions, fibroblasts align perpendicular to the force vector. This stimulus results in an increase in alpha(1)(I) procollagen mRNA in cells cultured on laminin or elastin but not fibronectin. Increased alpha(1)(I) procollagen mRNA was detected 6 h after exposure to strain and reached control levels by 72 h. [(3)H]proline incorporation into newly synthesized procollagen reflects changes in mRNA levels. Strained fibroblasts cultured on laminin or elastin incorporated 190 and 114%, respectively, more [(3)H]proline into procollagen than did unstrained cells. No difference was detected in strained fibroblasts cultured on fibronectin. These results suggest that fibroblasts respond to mechanical strain in vitro, and this response is signaled by cell-extracellular matrix interactions.  相似文献   

15.
Mesenchymal cells (fibroblasts, smooth muscle cells) and endothelial cells were shown to interact with elastin fibers. The strong adhesion of elastin fibers to these cells is mediated by a cell membrane complex with a major glycoprotein component of 120 kDa designated as elastonectin. This interaction was studied by transmission electron microscopy (TEM) and immunocytochemical techniques using antibodies raised against the elastin adhesive proteins. When fibroblasts and smooth muscle cells were cultured in presence of elastin fibers, TEM showed an adhesion mechanism that takes place over several sites along the plasma membrane of these cells. Endothelial cells showed a very close association with elastin, emitting “pseudopodia” that embody the fibers. TEM, indirect immunofluorescence, immunoperoxidase, and confocal microscopy showed the presence and localization of cell membrane components synthesized in large quantities when cells were incubated in presence of elastin. Cells without elastin fibers barely revealed the adhesive membrane complex. These results confirm and extend previous findings concerning the presence of an inducible cell membrane complex that mediates the adhesion of elastin fibers to these cell types. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Extracellular matrix remodeling has been proposed as one mechanism by which proximal pulmonary arteries stiffen during pulmonary arterial hypertension (PAH). Although some attention has been paid to the role of collagen and metallomatrix proteins in affecting vascular stiffness, much less work has been performed on changes in elastin structure-function relationships in PAH. Such work is warranted, given the importance of elastin as the structural protein primarily responsible for the passive elastic behavior of these conduit arteries. Here, we study structure-function relationships of fresh arterial tissue and purified arterial elastin from the main, left, and right pulmonary artery branches of normotensive and hypoxia-induced pulmonary hypertensive neonatal calves. PAH resulted in an average 81 and 72% increase in stiffness of fresh and digested tissue, respectively. Increase in stiffness appears most attributable to elevated elastic modulus, which increased 46 and 65%, respectively, for fresh and digested tissue. Comparison between fresh and digested tissues shows that, at 35% strain, a minimum of 48% of the arterial load is carried by elastin, and a minimum of 43% of the change in stiffness of arterial tissue is due to the change in elastin stiffness. Analysis of the stress-strain behavior revealed that PAH causes an increase in the strains associated with the physiological pressure range but had no effect on the strain of transition from elastin-dominant to collagen-dominant behavior. These results indicate that mechanobiological adaptations of the continuum and geometric properties of elastin, in response to PAH, significantly elevate the circumferential stiffness of proximal pulmonary arterial tissue.  相似文献   

17.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.  相似文献   

18.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

19.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

20.
Whole muscles loaded to failure frequently fail at or near myotendinous junctions. The present investigation was directed toward determining the breaking stress and failure site of intact and injured myotendinous junction preparations consisting of muscle cells dissected free from surrounding parallel structures but still attached to tendon collagen fibers. These tests show that the breaking stress for intact myotendinous units is 2.7 x 10(5) N/m2, expressed relative to cell cross-sectional area. Failure occurs immediately external to the junction membrane between the cell membrane and lamina densa of the basement membrane. Site and stress at failure are independent of strain and strain rate over a biologically relevant range. Breaking stress in the plane of the membrane, corrected for membrane folding, is 1.2 X 10(4) N/m2. This value is not significantly greater than stress at maximum isometric tension for these cells at these sarcomere lengths. After compression injury, cells fail within the compression site at significantly lower stress (1.9 X 10(5) N/m2). These findings suggest that, in muscle strain injuries that occur under conditions simulated here, failure occurs at myotendinous junctions unless the muscle has suffered previous compression injury leading to failure within the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号