首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An "overall sperm quality" parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert.  相似文献   

2.
3.
Sperm competition games: sperm selection by females   总被引:1,自引:0,他引:1  
We analyse a co-evolutionary sexual conflict game, in which males compete for fertilizations (sperm competition) and females operate sperm selection against unfavourable ejaculates (cryptic female choice). For simplicity, each female mates with two males per reproductive event, and the competing ejaculates are of two types, favourable (having high viability or success) or unfavourable (where progeny are less successful). Over evolutionary time, females can increase their level of sperm selection (measured as the proportion of unfavourable sperm eliminated) by paying a fecundity cost. Males can regulate sperm allocations depending on whether they will be favoured or disfavoured, but increasing sperm allocation reduces their mating rate. The resolution of this game depends on whether males are equal, or unequal. Males could be equal: each is favoured with probability, p, reflecting the proportion of females in the population that favour his ejaculate (the 'random-roles' model); different males are favoured by different sets of females. Alternatively, males could be unequal: given males are perceived consistently by all females as two distinct types, favoured and disfavoured, where p is now the frequency of the favoured male type in the population (the 'constant-types' model). In both cases, the evolutionarily stable strategy (ESS) is for females initially to increase sperm selection from zero as the viability of offspring from unfavourable ejaculates falls below that of favourable ejaculates. But in the random-roles model, sperm selection decreases again towards zero as the unfavourable ejaculates become disastrous (i.e. as their progeny viability decreases towards zero). This occurs because males avoid expenditure in unfavourable matings, to conserve sperm for matings in the favoured role where their offspring have high viability, thus allowing females to relax sperm selection. If sperm selection is costly to females, ESS sperm selection is high across a region of intermediate viabilities. If it is uncostly, there is no ESS in this region unless sperm limitation (i.e. some eggs fail to be fertilized because sperm numbers are too low) is included into the model. In the constant-types model, no relaxation of sperm selection occurs at very low viabilities of disfavoured male progeny. If sperm selection is sufficiently costly, ESS sperm selection increases as progeny viability decreases down towards zero; but if it is uncostly, there is no ESS at the lowest viabilities, and unlike the random-roles model, this cannot be stabilized by including sperm limitation. Sperm allocations in the ESS regions differ between the two models. With random roles, males always allocate more sperm in the favoured role. With constant types, the male type that is favoured allocates less sperm than the disfavoured type. These results suggests that empiricists studying cryptic female choice and sperm allocation patterns need to determine whether sperm selection is applied differently, or consistently, on given males by different females in the same population.  相似文献   

4.
5.
Female promiscuity can lead to the spermatazoa of several males 'competing' to fertilize the ova of a single female. Such promiscuity is relatively common among mammals and has resulted in a suite of adaptations associated with sperm competition. In the last decade, laboratory scientists using experimental techniques have clarified the physiological and behavioural mechanisms that result from sperm competition. Field biologists have collected data on a variety of mammals to test predictions of sperm competition theory. Unfortunately, theories developed and tested in laboratory situations do not always explain variation in behaviour observed in field studies.  相似文献   

6.
Ornithologists have known for a long time that males of monogamous bird species sometimes copulate with females from other pairs, but it is only in the last few years that researchers have shown that these extra-pair copulations can result in offspring and increase male reproductive success. Males time their extra-pair copulations to coincide with the period when females are fertilizable, and they show a range of remarkable behaviours to help them secure these matings, since in most cases females attempt to avoid them. At the same time, males of most species employ one of two strategies (mate guarding or frequent copulation) to avoid being cuckolded themselves.  相似文献   

7.
Summary Modified B S translocation males were developed at 26.0° C where univalentbearing gametes are recovered with less than half the frequency than at 18.0° C. Upon eclosion the males were stored for definite time periods at either temperature before mating individually to single y free-X females. the transfer cultures of the females show a higher frequency of recovery of univalent-bearing progeny regardless of the temperature or storage treatment of the male. In addition, postmeiotic temperature treatment does not appear to fundamentally alter the overall frequency of recovery of univalent-bearing gametes which is presumably determined by the developmental temperature of the male. A similar trend is observed for matings of y females to single X.YSYL/O males in which the males were developed and stored at 26.0° C; namely, a higher frequency of recovery of attached-XY gametes in the transfer cultures.  相似文献   

8.
9.
10.
Reproductive strategies often consist of two alternative tactics whereby males either compete for and guard females, or sneak copulations. By their nature, alternative tactics expose males to differing risks of sperm competition; sneaks will always be subject to sperm competition but guards will be subject to sperm competition with low probability, dependent on the number of sneaks. Recent game-theoretical models predict that males in the sneak role should have the greater gametic expenditure but that the disparity in expenditure should decrease with increasing numbers of sneaks. Male dung beetles in the genus Onthophagus can be separated into two morphs: major males have horns and guard females whereas minor males are hornless and sneak copulations. Here we compare testis size and ejaculate characteristics between these alternative morphs. We find that in O. binodis 30% of males are sneaks, and sneaks have larger testes, ejaculate volumes, and longer sperm than guards. In O. taurus 60% of males are sneaks and there are no differences in gametic traits. Our data thus provide empirical support for game-theoretical models of sperm competition.  相似文献   

11.
Genetic and cell biological analyses of sperm behavior in the female reproductive tract are providing important clues to the mechanisms of sperm competition, a form of sexual selection that is an important force that shapes reproductive behavior, physiology and morphology in a wide range of species.  相似文献   

12.
This study presents three models to explain the mechanism oflast male sperm precedence in birds. Because passive loss ofsperm from the female reproductive tract occurs, all modelsincorporate this process. The three models are passive spermloss alone, stratification with passive sperm loss, and displacementwith passive sperm loss. With two inseminations containing thesame number of sperm, the models make the following predictions.For passive sperm loss alone, (1) differential paternity ispositively and linearly related to the time interval betweeninseminations, (2) with a slope that is equal to rate of lossof sperm from the female reproductive tract, (3) with an interceptthat is the same as the differential fertilizing capacity betweenthe semen of the two inseminations, and (4) the ratio of offspringfrom two inseminations remains constant over time. For stratification,(1) the relationship between differential paternity and theinterval between inseminations is nonlinear and exhibits a "brokenstick" pattern, with a substantial first-insemination precedencefor short intervals, and (2) the proportion of offspring fatheredby the first insemination increases over time. For displacement,the relationship between differential paternity and the intervalbetween inseminations is nonlinear and also exhibits a "brokenstick" pattern, but in contrast to the stratification model,sperm from the last insemination have precedence. Data fromthree experimental studies of the domestic fowl and one forthe turkey provide the opportunity to test these models, albeitto different extents. The data from all studies are consistentwith the passive sperm-loss model, except that one aspect ofone data set provided ambiguous support for stratification.None of the data provided any support for the displacement model.  相似文献   

13.
Sperm show a remarkable degree of variation in size, shape and complexity. Murine rodents exhibit a sperm head morphology that differs greatly from the ovoid shape that is characteristic of most mammals. These rodents have sperm that bear one or more apical hooks, the function of which is currently surrounded by much controversy. It has been suggested that the hook serves to facilitate the formation of sperm groups, which in some species exhibit relatively faster velocities than single cells and thus, may provide an advantage when ejaculates are competing for fertilisations. In support of this hypothesis, a comparative study reported a positive association between the strength of sperm competition (estimated from testes size) and the curvature of the sperm hook amongst 37 murine species. Here, we assessed whether sperm competition influences sperm hookedness at the intra-specific level. Following 16 generations of selection, we used geometric morphometry (GM) to describe sperm head morphology in selection lines of house mice evolving with (polygamous) and without (monogamous) sperm competition. Although the GM analysis returned two relative warps that described variation in the curvature of the sperm hook, we found no evidence of divergence between the selection lines. Thus, we can conclude that sperm competition does not influence the degree of sperm hookedness in house mice.  相似文献   

14.
Five microsatellite loci were used to determine paternities in six Apis mellifera colonies headed by naturally mated queens. The last inseminating males were identified by collecting and genotyping the mating sign left in the genital tract of each queen. Significant differences in paternity frequencies were observed between males, but the proportion of worker and queen offspring sired by the last inseminating drone did not differ significantly from those of other drones. Each male kept his rank of precedence for the different cohorts, although the variance in subfamily proportions decreased over time, most notably in the colony displaying the lowest level of polyandry. These results suggest that, if sperm competition exists in the honeybee, it does not significantly increase the fitness of the last inseminating drone. The spermatozoa of the different inseminating drones are not totally mixed before they reach the spermatheca, in particular when only few males mate with the queen. The weak difference in the subfamily proportions observed between queen and worker samples confirms that nepotistic interactions are rare. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

15.
Sperm competition was identified in 1970 as a pervasive selective force in post‐copulatory sexual selection that occurs when the ejaculates of different males compete to fertilise a given set of ova. Since then, sperm competition has been much studied both empirically and theoretically. Because sperm competition often favours large ejaculates, an important challenge has been to understand the evolution of strategies through which males invest in sperm production and economise sperm allocation to maximise reproductive success under competitive conditions. Sperm competition mechanisms vary greatly, depending on many factors including the level of sperm competition, space constraints in the sperm competition arena, male mating roles, and female influences on sperm utilisation. Consequently, theoretical models of ejaculate economics are complex and varied, often with apparently conflicting predictions. The goal of this review is to synthesise the theoretical basis of ejaculate economics under sperm competition, aiming to provide empiricists with categorised model assumptions and predictions. We show that apparent contradictions between older and newer models can often be reconciled and there is considerable consensus in the predictions generated by different models. We also discuss qualitative empirical support for some of these predictions, and detail quantitative matches between predictions and observations that exist in the yellow dung fly. We argue that ejaculate economic theory represents a powerful heuristic to explain the diversity in ejaculate traits at multiple levels: across species, across males and within individual males. Future progress requires greater understanding of sperm competition mechanisms, quantification of trade‐offs between ejaculate allocation and numbers of matings gained, further knowledge of mechanisms of female sperm selection and their associated costs, further investigation of non‐sperm ejaculate effects, and theoretical integration of pre‐ and post‐copulatory episodes of sexual selection.  相似文献   

16.
A two round sperm competition model is analysed to determine which male strategy is advantageous for fertilization of a given set of eggs; guarding a particular female or searching for another copulation. A guarding male is one who would guard if he mates in the first round (which may not occur) whilst a non-guarding male decides on how much sperm to allocate if given the opportunity to inseminate a female in round one. Guarding behaviour is defined in terms of a probability of preventing a further insemination if challenged by a rival male. Sperm success with a single female obeys the "raffle principle". An evolutionarily stable strategy (ESS) approach is used to ascertain the best non-guarding ejaculation strategy. We show that for each fixed proportion of guarders in the population the strategies are ordered and that only a single guarding strategy need be considered. The model predicts that there will be evolution to either the guarding strategy or a single non-guarding strategy or a polymorphic combination of guarding and some (or all) of the non-guarding strategies. The conditions for coexistence to occur were shown to be rare in comparison to those necessary for a monomorphism. Copyright 1999 Academic Press.  相似文献   

17.
Clark AG 《Heredity》2002,88(2):148-153
Sperm competition may occur whenever sperm from more than one male are present in the reproductive tract of the female. Studies of field-caught Drosophila reveal that a substantial fraction (80%) of females clearly have sperm from more than one male, and the figure is probably higher because only a small number of progeny are typically surveyed, so a strong skew in paternity can make multiply-mated females appear as singly mated unless appropriate models are applied. Examination of genetic variation in aspects of sperm competition has revealed some striking patterns, particularly in the implications for the maintenance of polymorphism. The magnitude of variation in sperm competitive ability is as great as that for other fitness components, and the males with the strongest displacement also appear to be the ones with the greatest positive effect on fertility. Why then does not the most competitive allele simply go to fixation? Such synergistic pleiotropy makes the polymorphism even more unexpected. Examination of patterns of competitive success of pairs of male genotypes, and of female-male interactions, demonstrate clearly that the outcome of sperm competition is not a simple property of each male. That is, sperm competitive ability of male genotypes cannot simply be ranked from best to worst. Rather, the outcome of each competitive bout depends on the particular pair of males. These results have intriguing implications for the molecular biology of genes involved in the determination of sperm competitive success, and on the opportunity for maintenance of polymorphism in those genes.  相似文献   

18.
Experimental studies in insects have shown how sperm competition can be a potent selective force acting on an array of male reproductive traits . However, the role of sperm quality in determining paternity in insects has been neglected, despite the fact that sperm quality has been shown to influence the outcome of sperm competition in vertebrates . A recent comparative analysis found that males of polyandrous insect species show a higher proportion of live sperm in their stores . Here, we test the hypothesis that sperm viability influences paternity at the within-species level. We use the cricket Teleogryllus oceanicus to conduct sperm competition trials involving prescreened males that differ in the viability of their sperm. We find that paternity success is determined by the proportion of live sperm in a male's ejaculate. Furthermore, we were able to predict the paternity patterns observed on the basis of the males' relative representation of viable sperm in the female's sperm-storage organ. Our findings provide the first experimental evidence for the theory that sperm competition selects for higher sperm quality in insects. Between-male variation in sperm quality needs to be considered in theoretical and experimental studies of insect sperm competition.  相似文献   

19.
Sperm viability and sperm competition in insects   总被引:14,自引:0,他引:14  
Sperm quality plays an important role in vertebrates in determining which male has the advantage when two or more males compete to fertilize a female's ova. In insects, however, the importance of sperm quality has never been considered, despite sperm competition being widespread and well studied in this group. We tested the hypothesis that sperm viability, measured as the proportion of live sperm, covaried with the intensity of sperm competition in insects. In a pairwise comparison of seven closely related species pairs, each comprising a monandrous and a polyandrous species (i.e., with and without sperm competition, respectively), we found that in all cases the polyandrous species had a higher proportion of live sperm in their sperm stores. The distribution of the percentage of live sperm showed considerable inter- and intraspecific variation, suggesting that, all else being equal, males will vary in their ability to fertilize ova on the basis of sperm viability alone. Our results suggest that sperm viability is one of a suite of male adaptations to sperm competition in insects.  相似文献   

20.
Fish exhibit an enormous variety of reproductive patterns. There is external and internal fertilization, simultaneous and sequential hermaphroditism as well as gonochorism, and an extremely widespread occurrence of parasitic reproductive behaviour among males. In most fish species there is a great size range of reproductive males, setting the stage for divergent, intraspecific reproductive patterns and an unparalleled concentration of alternative male reproductive phenotypes. Recent theoretical, empirical and comparative evidence suggests that adaptations to sperm competition in fish might be responsible for some of the most intriguing examples of reproductive design known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号