首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The directionality control in chemotaxis is the result of a reciprocal regulation of PI3-kinase and PTEN subcellular localization. MK2(-/-) neutrophils have a directionality loss in fMLP-induced chemotaxis. We found that in polarized WT neutrophils PTEN was localized in the uropod region. However, MK2(-/-) neutrophils or p38 MAPK inhibitor-SB203580-pretreated WT neutrophils showed a disrupted PTEN subcellular localization. Some PTEN was localized at the leading edge of the polarized neutrophils, which may lower the concentration of PI3-kinase lipid product PtdIns(3,4,5)P3 required for directionality sensing. FMLP-stimulated MK2(-/-) neutrophils or SB203580-pretreated WT neutrophils also had disrupted F-actin polarization. F-actin polymerization inhibitor lantrunculin-B disrupted the polarization of PTEN, but not PtdIns(3,4,5)P3. The results suggest that PTEN uropod polarization is F-actin polymerization-dependent and may be through the effect of MK2 on F-actin polarization.  相似文献   

2.
KMT2/Set1 is the catalytic subunit of the complex of proteins associated with Set1 (COMPASS) that is responsible for the methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. Whereas monomethylated H3K4 (H3K4me1) is found throughout the genome, di- (H3K4me2) and tri- (H3K4me3) methylated H3K4 are enriched at specific loci, which correlates with the promoter and 5′-ends of actively transcribed genes in the case of H3K4me3. The COMPASS subunits contain a number of domains that are conserved in homologous complexes in higher eukaryotes and are reported to interact with modified histones. However, the exact organization of these subunits and their role within the complex have not been elucidated. In this study we showed that: (1) subunits Swd1 and Swd3 form a stable heterodimer that dissociates upon binding to a modified H3K4me2 tail peptide, suggesting a regulatory role in COMPASS; (2) the affinity of the subunit Spp1 for modified histone H3 substrates is much higher than that of Swd1 and Swd3; (3) Spp1 has a preference for H3K4me2/3 methylation state; and (4) Spp1 contains a high-affinity DNA-binding domain in the previously uncharacterised C-terminal region. These data allow us to suggest a mechanism for the regulation of COMPASS activity at an actively transcribed gene.  相似文献   

3.
S Bae  JH Jung  K Kim  IS An  SY Kim  JH Lee  IC Park  YW Jin  SJ Lee  S An 《FEBS letters》2012,586(19):3057-3063
Murine double minute (MDM2) is an E3 ligase that promotes ubiquitination and degradation of tumor suppressor protein 53 (p53). MDM2-mediated regulation of p53 has been investigated as a classical tumorigenesis pathway. Here, we describe TRIAD1 as a novel modulator of the p53-MDM2 axis that induces p53 activation by inhibiting its regulation by MDM2. Ablation of TRIAD1 attenuates p53 levels activity upon DNA damage, whereas ectopic expression of TRIAD1 promotes p53 stability by inhibiting MDM2-mediated ubiquitination/degradation. Moreover, TRIAD1 binds to the C-terminus of p53 to promote its dissociation from MDM2. These results implicate TRIAD1 as a novel regulatory factor of p53-MDM2.Structured summary of protein interactions:p53 physically interacts with Mdm2 and Triad1 by anti tag coimmunoprecipitation (View Interaction: 1, 2, 3)Mdm2physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Mdm2 by anti tag coimmunoprecipitation (View interaction)Triad1binds to p53 by pull down (View interaction)Mdm2physically interacts with p53 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)  相似文献   

4.
We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.  相似文献   

5.
The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex   总被引:1,自引:0,他引:1  
26S proteasomes consist of cylindrical 20S proteasomes with 19S regulatory complexes attached to the ends. Treatment with high concentrations of salt causes the regulatory complexes to separate into two sub-complexes, the base, which is in contact with the 20S proteasome, and the lid, which is the distal part of the 19S complex. Here, we describe two assembly intermediates of the human regulatory complex. One is a dimer of the two ATPase subunits, Rpt3 and Rpt6. The other is a complex of nascent Rpn2, Rpn10, Rpn11, Rpn13, and Txnl1, attached to preexisting 20S proteasomes. This early assembly complex does not yet contain Rpn1 or any of the ATPase subunits of the base. Thus, assembly of 19S regulatory complexes takes place on preexisting 20S proteasomes, and part of the lid is assembled before the base.  相似文献   

6.
Mutations in the transpeptidase domain of penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae that reduce the affinity to beta-lactams are important determinants of resistance to these antibiotics. We have now analyzed in vitro and in vivo properties of PBP2x variants from cefotaxime-resistant laboratory mutants and a clinical isolate. The patterns of two to four resistance-specific mutations present in each of the proteins, all of which are placed between 6.6 and 24 Å around the active site, fall into three categories according to their positions in the three-dimensional structure. The first PBP2x group is characterized by mutations at the end of helix α11 and carries the well-known T550A change and/or one mutation on the surface of the penicillin-binding domain in close contact with the C-terminal domain. All group I proteins display very low acylation efficiencies, ≤ 1700 M− 1 s− 1, for cefotaxime. The second class represented by PBP2x of the mutant C505 shows acylation efficiencies below 100 M− 1 s− 1 for both cefotaxime and benzylpenicillin and contains the mutation L403F at a critical site close to the active serine. PBP2x of the clinical isolate 669 reveals a third mutational pathway where at least the two mutations Q552E and S389L are important for resistance, and acylation efficiency is reduced for both beta-lactams to around 10,000 M− 1 s− 1. In each group, at least one mutation is located in close vicinity to the active site and mediates a resistance phenotype in vivo alone, whereas other mutations might exhibit secondary effects only in context with other alterations.  相似文献   

7.
The Ser/Thr protein kinase MAPKAP kinase 2 (MK2) plays a crucial role in inflammation. We determined the structure of the kinase domain of MK2 in complex with a low molecular mass inhibitor in two different crystal forms, obtained from soaking and co-crystallization. To our knowledge, these are the first structures of MK2 showing the binding mode of an inhibitor with high binding affinity (IC50 8.5 nM). The two crystal forms revealed conformational flexibility in the binding site and extend the experimental basis for rational drug design. Crystal form-1 contained one MK2 molecule per asymmetric unit. Form-2 contained 12 molecules, which arrange into two different types of MK2 trimers. One of them may serve as a model for an intermediate state during substrate phosphorylation, as each MK2 monomer places its activation segment into the substrate peptide binding groove of the trimer neighbor.  相似文献   

8.
9.
Ca(2+)/calmodulin-dependent protein kinase kinase alpha (CaMKKalpha) plays critical roles in the modulation of neuronal cell survival as well as many other cellular activities. Here we show that 14-3-3 proteins directly regulate CaMKKalpha when the enzyme is phosphorylated by protein kinase A on either Ser74 or Ser475. Mutational analysis revealed that these two serines are both functional: the CaMKKalpha mutant with a mutation at either of these residues, but not the double mutant, was inhibited significantly by 14-3-3. The mode of regulation described herein differs the recently described mode of 14-3-3 regulation of CaMKKalpha.  相似文献   

10.
11.
12.
Onchocerciasis or river blindness, caused by the filarial worm Onchocerca volvulus, is the world’s second leading infectious cause of blindness. In order to chronically infect the host, O. volvulus has evolved molecular strategies that influence and direct immune responses away from the modes most damaging to it. The O. volvulus GST1 (OvGST1) is a unique glutathione S-transferase (GST) in that it is a glycoprotein and possesses a signal peptide that is cleaved off in the process of maturation. The mature protein starts with a 25-amino-acid extension not present in other GSTs. In all life stages of the filarial worm, it is located directly at the parasite-host interface. Here, the OvGST1 functions as a highly specific glutathione-dependent prostaglandin D synthase (PGDS). The enzyme therefore has the potential to participate in the modulation of immune responses by contributing to the production of parasite-derived prostanoids and restraining the host’s effector responses, making it a tempting target for chemotherapy and vaccine development. Here, we report the crystal structure of the OvGST1 bound to its cofactor glutathione at 2.0 Å resolution. The structure reveals an overall structural homology to the haematopoietic PGDS from vertebrates but, surprisingly, also a large conformational change in the prostaglandin binding pocket. The observed differences reveal a different vicinity of the prostaglandin H2 binding pocket that demands another prostaglandin H2 binding mode to that proposed for the vertebrate PGDS. Finally, a putative substrate binding mode for prostaglandin H2 is postulated based on the observed structural insights.  相似文献   

13.

Background

In a previous study, we conducted an expression cloning screen of a cDNA library prepared from Coprinopsis cinerea mycelia using Multi-PK antibodies and detected a wide variety of Ser/Thr protein kinases. One of the isolated clones, CMZ032, was found to encode a putative Ser/Thr protein kinase designated CoPK32. In the present study, we investigated the biochemical properties and physiological significance of CoPK32.

Methods

CoPK32 was expressed in Escherichia coli, and its biochemical properties were examined. The effects of high osmotic stresses on the growth of C. cinerea and on the endogenous CoPK32 activity in mycelia were also examined.

Results

CoPK32 showed autophosphorylation activity and effectively phosphorylated exogenous protein substrates. CoPK32S, a splice variant that was 18 amino acids shorter than CoPK32, showed much lower protein kinase activity than CoPK32. The catalytic properties of CoPK32 deletion mutants suggested that the C-terminal region of CoPK32 was important for the kinase activity and recognition of substrates. CoPK32 was highly expressed in the actively growing region of the mycelial colony. When mycelia were stimulated by high osmotic stresses, endogenous CoPK32 was markedly activated and the mycelial growth was severely inhibited. The activation of CoPK32 activity by high osmotic stresses was abrogated by SB202190 or SB239063 as well-known inhibitors of p38 mitogen-activated protein kinase.

Conclusions

CoPK32 is involved in the stress response pathway in mycelia of C. cinerea in response to environmental stresses.

General significance

In C. cinerea, protein kinases such as CoPK32 play important roles in signal transduction pathways involved in stress responses.  相似文献   

14.
15.
16.
RAG1 and RAG2 proteins catalyze site-specific DNA cleavage reactions in V(D)J recombination, a process that assembles antigen receptor genes from component gene segments during lymphocyte development. The first step towards the DNA cleavage reaction is the sequence-specific association of the RAG proteins with the conserved recombination signal sequence (RSS), which flanks each gene segment in the antigen receptor loci. Questions remain as to the contribution of each RAG protein to recognition of the RSS. For example, while RAG1 alone is capable of recognizing the conserved elements of the RSS, it is not clear if or how RAG2 may enhance sequence-specific associations with the RSS. To shed light on this issue, we examined the association of RAG1, with and without RAG2, with consensus RSS versus non-RSS substrates using fluorescence anisotropy and gel mobility shift assays. The results indicate that while RAG1 can recognize the RSS, the sequence-specific interaction under physiological conditions is masked by a high-affinity non-sequence-specific DNA binding mode. Significantly, addition of RAG2 effectively suppressed the association of RAG1 with non-sequence-specific DNA, resulting in a large differential in binding affinity for the RSS versus the non-RSS sites. We conclude that this represents a major means by which RAG2 contributes to the initial recognition of the RSS and that, therefore, association of RAG1 with RAG2 is required for effective interactions with the RSS in developing lymphocytes.  相似文献   

17.
A MAPKK-like mitotic kinase, TOPK, implies the formation of mitotic spindles and spindle midzone and accomplishing cytokinesis, however, its underlying mechanism remains unclear. A microtubule bundling protein, PRC1, plays a pivotal role in the formation of mitotic spindles and spindle midzone. Because of their functional resemblance, we attempted to clarify the links between these two molecules. TOPK supported mitotic advance via the cdk1/cyclin B1-dependent phosphorylation of PRC1. TOPK induced the phosphorylation of PRC1 at T481 in vivo, however, TOPK did not phosphorylate PRC1 in vitro. TOPK induced the phosphorylation of PRC1 at T481 only when the cdk1/cyclin B1 existed simultaneously in vitro. Both the enzymatic activity of TOPK and association competence of TOPK with PRC1 were mandatory for this phosphorylation. TOPK binds to cdk1/cyclin B1, microtubules and PRC1 via its unique region near the C terminus. TOPK co-localized closely with cdk1 throughout the cell cycle in vivo. Collectively, these data indicate that TOPK, which makes a kinase-substrate complex with cdk1/cyclin B1 and PRC1 on microtubules during mitosis, enhances the cdk1/cyclin B1-dependent phosphorylation of PRC1 and thereby strongly promotes cytokinesis.  相似文献   

18.
19.
Recent studies have shown that trans-phosphorylation of the Abl SH3 domain at Tyr89 by Src-family kinases is required for the full transforming activity of Bcr-Abl. Tyr89 localizes to a binding surface of the SH3 domain that engages the SH2-kinase linker in the crystal structure of the c-Abl core. Displacement of SH3 from the linker is likely to influence efficient downregulation of c-Abl. Hydrogen-deuterium exchange (HX) and mass spectrometry (MS) were used to investigate whether Tyr89 phosphorylation affects the ability of the SH3 domain to interact intramolecularly with the SH2-kinase linker in cis as well as other peptide ligands in trans. HX MS analysis of SH3 binding showed that when various Abl constructs were phosphorylated at Tyr89 by the Src-family kinase Hck, SH3 was unable to engage a high-affinity ligand in trans and that interaction with the linker in cis was reduced dramatically in a construct containing the SH3 and SH2 domains plus the linker. Phosphorylation of the Abl SH3 domain on Tyr89 also interfered with binding to the negative regulatory protein Abi-1 in trans. Site-directed mutagenesis of Tyr89 and Tyr245, another tyrosine phosphorylation site located in the linker that may also influence SH3 binding, implicated Tyr89 as the key residue necessary for disrupting regulation after phosphorylation. These results imply that phosphorylation at Tyr89 by Src-family kinases prevents engagement of the Abl SH3 domain with its intramolecular binding partner leading to enhanced Abl kinase activity and cellular signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号