首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mediterranean fruit fly (Ceratitis capitata) is a cosmopolitan pest of hundreds of species of commercial and wild fruits. It is considered a major economic pest of commercial fruits in the world. Adult Mediterranean fruit flies feed on all sorts of protein sources, including animal excreta, in order to develop eggs. After reaching sexual maturity and copulating, female flies lay eggs in fruit by puncturing the skin with their ovipositors and injecting batches of eggs into the wounds. In view of the increase in food-borne illnesses associated with consumption of fresh produce and unpasteurized fruit juices, we investigated the potential of Mediterranean fruit fly to serve as a vector for transmission of human pathogens to fruits. Addition of green fluorescent protein (GFP)-tagged Escherichia coli to a Mediterranean fruit fly feeding solution resulted in a dose-dependent increase in the fly's bacterial load. Flies exposed to fecal material enriched with GFP-tagged E. coli were similarly contaminated and were capable of transmitting E. coli to intact apples in a cage model system. Washing contaminated apples with tap water did not eliminate the E. coli. Flies inoculated with E. coli harbored the bacteria for up to 7 days following contamination. Fluorescence microscopy demonstrated that the majority of fluorescent bacteria were confined along the pseudotrachea in the labelum edge of the fly proboscis. Wild flies captured at various geographic locations were found to carry coliforms, and in some cases presumptive identification of E. coli was made. These findings support the hypothesis that the common Mediterranean fruit fly is a potential vector of human pathogens to fruits.  相似文献   

2.
3.
Huang  Kailong  Mao  Yanping  Zhao  Fuzheng  Zhang  Xu-Xiang  Ju  Feng  Ye  Lin  Wang  Yulin  Li  Bing  Ren  Hongqiang  Zhang  Tong 《Applied microbiology and biotechnology》2018,102(5):2455-2464
Applied Microbiology and Biotechnology - To comprehensively understand the profile of free-living bacteria and potential bacterial pathogens in sewage treatment plants (STPs), this study applied...  相似文献   

4.
5.
The insect salivary enzyme glucose oxidase (GOX) can inhibit wound-inducible nicotine production in tobacco, Nicotiana tabacum. We examined whether salivary gland extracts of Helicoverpa zea lacking active GOX could still suppress nicotine in tobacco, Nicotiana tabacum, and whether GOX could suppress wound-inducible defenses of another Solanaceous plant, tomato Lycopersicon esculentum. Tobacco leaves were wounded with a cork borer and treated with water, salivary gland extracts with active GOX (SxG), or salivary gland extracts with inactive GOX (SxI). After three days, leaves treated with SxG had significantly less nicotine than all other wounded treatments. Neonates that fed on the terminal leaves of tobacco plants treated with SxG had significantly higher survival than neonates that fed on leaves treated with either SxI or water. This evidence supports the assertion that GOX is the salivary factor responsible for the suppression of tobacco plant nicotine production by H. zea saliva. Results for the NahG tobacco plants, which lack salicylic acid (SA) due to a transgene for bacterial SA hydroxylase, indicate that suppression of nicotine by GOX does not require SA. However, tobacco leaves that were wounded and treated with SxG had significantly higher levels of the SA-mediated PR-1a protein than leaves treated with SxI or water. Leaves of tomato plants wounded with scissors and then treated with SxG had trypsin inhibitor levels that were moderately lower than plants wounded and treated with purified GOX, water, or SxI. However, all the wounded tomato leaves irrespective of treatment resulted in lower caterpillar growth rates than the non-wounded tomato leaves. Glucose oxidase is the first insect salivary enzyme shown to suppress wound-inducible herbivore defenses of plants.  相似文献   

6.
Both thelytokous and arrhenotokous Trichogramma minutum were collected from eggs of the spruce budmoth, Zeiraphera canadensis in New Brunswick, Canada and their phenotypic traits compared for use in biological control. The lower threshold temperature for development of thelytokous and arrhenotokous parasitoids was 9.7 and 10.1 °C, respectively; the former required significantly higher degree-days for development from egg to adult (–x±SE=165.1±5.8 °D) than the latter (128.1±4.9 °D). Thelytokous and arrhenotokous parasitoids had similar forewing length (0.49±0.01 vs. 0.49±0.01 mm) and adult lifespan (13.3±0.7 vs. 14.0±1.1 days), but significantly different fecundity and sex ratios. Thelytokous females produced fewer offspring (89.5±6.6 vs. 173.9±6.4) and fewer female progeny (77.2±5.4 vs. 109.8±3.3) despite an overall higher proportion of females (91.6±1.1% vs. 65.4±2.8%) than their arrhenotokous counterparts. Ovarian dissections showed that the number of eggs increased with parasitoid age in arrhenotokous parasitoids but remained steady in thelytokous parasitoids. The variation in ovarian development of the two forms was the major factor contributing to the differences in fecundity. Thelytokous parasitoids were more host-specific than arrhenotokous ones; when offered eight host species, the former rejected three whereas the latter rejected only one. Thelytokous parasitoids survived better than arrhenotokous ones when stored from 30 to 150 days at 4 °C. Thelytokous females were slower at initiating flight after emergence than arrhenotokous females but maintained flight activity longer (6 h). These results indicate that thelytokous T. minutum are different from their arrhenotokous counterparts physiologically, biologically and ecologically and that they may play different roles in the field. The potential for using thelytokous parasitoids in biological control programs is discussed.  相似文献   

7.
The soluble cell-free fraction (150,000g high-speed supernatants [HSS]) of Pseudomonas fluorescens NCIMB 11764 contains putative cyanide oxygenase (CNO) responsible for initiating cyanide oxidation and assimilation as a nitrogenous growth substrate. CNO activity, assayed either by cyanide-dependent O(2) or NADH uptake, or by conversion of radioactive K(14)CN to (14)CO(2), was detected at micromolar concentrations (apparent half-saturation constant, 4 microM). Results demonstrating that CNO requires a protein-enriched cell fraction and a low MW redox factor (<500 Da) for which reduced biopterin could substitute are presented. The properties of CNO are consistent with those of a pterin hydroxylase.  相似文献   

8.
《Fly》2013,7(1):21-25
Phagocytosis is an evolutionarily ancient, receptor-driven process, by which phagocytic cells recognize invading microbes and destroy them after internalization. The phagocytosis receptor Eater is expressed exclusively on Drosophila phagocytes and is required for the survival of bacterial infections. In a recent study, we explored how Eater can defend fruit flies against different kinds of bacteria. We discovered that Eater bound to certain types of bacteria directly, while for others bacterial binding was dependent on prior disruption of the bacterial envelope. Similar to phagocytes, antimicrobial peptides and lysozymes are ancient components of animal immune systems. Our results suggest that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria. Both types of molecules promote surface-exposure of bacterial ligands that otherwise would remain buried and hidden under an outer membrane. We propose that unmasking ligands for phagocytic receptors may be a conserved mechanism operating in many animals, including humans. Thus, studying a Drosophila phagocytosis receptor may advance our understanding of innate immunity in general.  相似文献   

9.
Chung YS  Kocks C 《Fly》2012,6(1):21-25
Phagocytosis is an evolutionarily ancient, receptor-driven process, by which phagocytic cells recognize invading microbes and destroy them after internalization. The phagocytosis receptor Eater is expressed exclusively on Drosophila phagocytes and is required for the survival of bacterial infections. In a recent study, we explored how Eater can defend fruit flies against different kinds of bacteria. We discovered that Eater bound to certain types of bacteria directly, while for others bacterial binding was dependent on prior disruption of the bacterial envelope. Similar to phagocytes, antimicrobial peptides and lysozymes are ancient components of animal immune systems. Our results suggest that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria. Both types of molecules promote surface-exposure of bacterial ligands that otherwise would remain buried and hidden under an outer membrane. We propose that unmasking ligands for phagocytic receptors may be a conserved mechanism operating in many animals, including humans. Thus, studying a Drosophila phagocytosis receptor may advance our understanding of innate immunity in general.  相似文献   

10.
11.
EDTA, a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium, BNC1, does not degrade stable metal-EDTA complexes. In the present study, an ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and the EDTA monooxygenase gene were expressed from a single operon in BNC1. The ABC-type transporter had a periplasmic-binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli, purified, and characterized. EppA was shown to bind free EDTA with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g., (Mg-EDTA)2−, were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis supported EppA binding only of free EDTA. When stable metal-EDTA complexes, e.g., (Cu-EDTA)2−, were titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes.  相似文献   

12.
Listeria, Rickettsia, Burkholderia, Shigella and Mycobacterium species subvert cellular actin dynamics to facilitate their movement within the host cytosol and to infect neighbouring cells while evading host immune surveillance and promoting their intracellular survival. 'Attaching and effacing' Escherichia coli do not enter host cells but attach intimately to the cell surface, inducing motile actin-rich pedestals, the function of which is currently unclear. The molecular basis of actin-based motility of these bacterial pathogens reveals novel insights about bacterial pathogenesis and fundamental host-cell pathways.  相似文献   

13.
Proteome analysis of bacterial pathogens   总被引:4,自引:0,他引:4  
Combining two-dimensional electrophoresis with mass spectrometry resulted in a powerful technology ideally suited to recognize and identify proteins of pathogenic microorganisms. This classical proteome analysis is now complemented by capillary chromatography/mass spectrometry combinations, miniaturization by chip technology and protein interaction investigations. Comparative proteomics is used to reveal vaccine candidates and pathogenicity factors. Immunoproteomics identifies specific and nonspecific antigens. For the management of the huge data amounts, bioinformatics is a valuable instrument for the construction of complex protein databases.  相似文献   

14.
The present study was carried out to evaluate the possible in vitro antibacterial potential of extracts of Eugenia jambolana seeds against multidrug-resistant human bacterial pathogens. Agar well diffusion and microbroth dilution assay methods were used for antibacterial susceptibility testing. Kill-kinetics study was done to know the rate and extent of bacterial killing. Phytochemical analysis and TLC-bioautography were performed by colour tests to characterize the putative compounds responsible for this antibacterial activity. Cytotoxic potential was evaluated on human erythrocytes by haemolytic assay method and acute oral toxicity study was done in mice. The plant extracts demonstrated varying degrees of strain specific antibacterial activity against all the test isolates. Further, ethyl acetate fraction obtained from fractionation of most active ethanol extract showed maximum antibacterial effect against all the test isolates. Phytochemical analysis and TLC-bioautography of ethyl acetate fraction revealed that phenolics were the major active phytoconstituents. Ethyl acetate fraction also demonstrated no haemolytic activity on human erythrocytes and no gross behavioural changes as well as toxic symptoms were observed in mice at recommended dosage level. The results provide justification for the use of E. jambolana in folk medicine to treat various infectious diseases and may contribute to the development of novel antimicrobial agents for the treatment of infections caused by these drug-resistant bacterial pathogens.  相似文献   

15.
The Species Abundance Distribution (SAD) is a fundamental property of ecological communities and the form and formation of SADs have been examined for a wide range of communities including those of microorganisms. Progress in understanding microbial SADs, however, has been limited by the remarkable diversity and vast size of microbial communities. As a result, few microbial systems have been sampled with sufficient depth to generate reliable estimates of the community SAD. We have used a novel approach to characterize the SAD of bacterial communities by coupling genomic DNA fractionation with analysis of terminal restriction fragment length polymorphisms (GC-TRFLP). Examination of a soil microbial community through GC-TRFLP revealed 731 bacterial operational taxonomic units (OTUs) that followed a lognormal distribution. To recover the same 731 OTUs through analysis of DNA sequence data is estimated to require analysis of 86,264 16S rRNA sequences. The approach is examined and validated through construction and analysis of simulated microbial communities in silico. Additional simulations performed to assess the potential effects of PCR bias show that biased amplification can cause a community whose distribution follows a power-law function to appear lognormally distributed. We also show that TRFLP analysis, in contrast to GC-TRFLP, is not able to effectively distinguish between competing SAD models. Our analysis supports use of the lognormal as the null distribution for studying the SAD of bacterial communities as for plant and animal communities.  相似文献   

16.
Eight species of noctuid larvae were tested for susceptibility to a nuclear polyhedrosis virus of the velvetbean caterpillar, Anticarsia gemmatalis. Velvetbean caterpillar larvae were highly susceptible to crude preparations of polyhedral inclusion bodies (PIBs; LD50 = 4.7 PIBs/larva), but preparations of purified polyhedra were much less effective against these larvae (LD50 = 319.7 PIBs/larva). Of seven other noctuid species tested, only Heliothis virescens was as susceptible to the virus as A. gemmatalis. High dosages were required to kill Heliothis zea, Trichoplusia ni, Pseudoplusia includens, and Spodoptera ornithogalli. Plathypena scabra and Spodoptera frugiperda were not susceptible.  相似文献   

17.
In recent years, genome-sequencing projects of pathogens and humans have revolutionized microbial drug target identification. Of the several known genomic strategies, subtractive genomics has been successfully utilized for identifying microbial drug targets. The present work demonstrates a novel genomics approach in which codon adaptation index (CAI), a measure used to predict the translational efficiency of a gene based on synonymous codon usage, is coupled with subtractive genomics approach for mining potential drug targets. The strategy adopted is demonstrated using respiratory pathogens, namely, Streptococcus pneumoniae and Haemophilus influenzae as examples. Our approach identified 8 potent target genes (Streptococcus pneumoniae?C2, H. influenzae?C6), which are functionally significant and also play key role in host-pathogen interactions. This approach facilitates swift identification of potential drug targets, thereby enabling the search for new inhibitors. These results underscore the utility of CAI for enhanced in silico drug target identification.  相似文献   

18.
19.
Increasing evidence indicates that apoptosis of the host cell may constitute a defense mechanism to confine the infection by bacterial pathogens. Certain pathogens have developed elegant mechanisms to modulate the fate of the host cell, which include induction or blockage of apoptosis. These studies will promote our understanding of the pathogenesis of infectious diseases and aid the development of means for therapeutic intervention.  相似文献   

20.
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼500 different kinases and ∼130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号