首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mass extinctions     
Morris SC 《Current biology : CB》2005,15(18):R744-R745
Factors influencing the evolution of complex traits such as body size are notoriously difficult to study but a new review of work on marine iguanas in the Galapagos islands suggests an answer may lie in the interplay of natural and sexual selection.  相似文献   

3.
This paper, which addresses the issue of the extinction of mite species at the global scale for the first time, highlights mite diversity, assesses the evidence for an extinction process, discusses contributing factors and estimates losses. The ~1 250 000 mite species occupy an enormous variety of terrestrial and freshwater ecosystems from the equator to the polar regions and to high altitudes. Some groups provide essential ecosystem services, including the incorporation of organic matter into the soil. The maintenance of mite diversity is inextricably linked to the continuance of floristic diversity, habitat complexity and insect diversity. The majority of mite species are assumed to be in the tropical rainforests, of which >50% has been destroyed or severely degraded. Most biodiversity hotspots are in tropical forests; endemic phytoseiid mite species are at least 17 times more concentrated in the hotspots than outside. Habitat destruction and degradation continue on an enormous scale, with increasing human population growth and resource consumption the overarching drivers of extinction. Moreover, climate change is likely to be worsening the effects of the other drivers at an increasing rate. The small body of direct evidence and a considerable body of indirect evidence strongly suggest the continuing, widespread extinction of mite species. Based on estimates of overall biodiversity loss, ~15% of mite species were likely to have become extinct by 2000, with losses currently expected to increase by between 0.6% and 6.0% by 2060. More detailed information on both spatial differences in mite assemblages and anthropogenic threats worldwide is crucial because they underpin the total number of species and their vulnerability to extinction, respectively. The rapid expansion of the protected area estate to capture the maximum possible area of ecosystem heterogeneity, especially in the biodiversity hotspots, is essential, as is best practice management of these areas.  相似文献   

4.
5.
6.
For many years, the megafaunal extinctions at the end of the Pleistocene have been assumed to have affected only those species that became extinct. However, recent analyses show that the surviving species may also have experienced losses in terms of genetic and ecological diversity.  相似文献   

7.
Parasite evolution and extinctions   总被引:1,自引:1,他引:0  
We examine the evolution of diseases that show the frequency‐dependent transmission process that is commonly applied to sexually and vector‐transmitted infections. As is commonly found, the basic reproductive ratio (R0) of the parasite is maximized by evolution. This has important implications, as it implies that for a wide range of circumstances diseases that show frequency‐dependent transmission may be selected to evolve towards driving their hosts to extinction. This contrasts with the results obtained in spatially explicit models where although parasite‐driven host extinction may occur, it is unlikely to evolve. We further show that an evolutionary constraint between transmission and virulence is required for evolution to lead to an endemic coexistence of both the host and the disease. Furthermore, this constraint needs to be saturating, such that transmission is ‘bought’ at an increasing cost in terms of virulence, to avoid evolution to extinction.  相似文献   

8.
An analysis of the final stratigraphic appearances of byrozoan species and genera, compiled in a world-wide bryozoan data base, revealed three discrete Late Ordovician extinctions. A Late Carddoc (Onnian) extinction was most pronounced on the plates of Baltica and Siberia. Endemic species and genera, confined to one plate and one lithotope were most affected and the extinction was coincident with increased migrations of bryozoan genera to Baltica and Siberia. The Late Caradoc extinction may be related to decreasing provinciality and competition between migrant and stenotopic taxa. Two major extinctions occurred in the Late Ashgill. The greatest of the two is recognized at the end of the Rawtheyan. and affected primarily taxa on the North American plate. The extinction at the end of the Hirnantian affected primarily Baltic taxa. The exact timing of the end-Rawtheyan extinction in North America cannot be established owing to incompleteness of the stratigraphic record. The Rawtheyan extinction occurred during a major glaciation centered in North Africa and a regression of epeiric seas. The large majority of North American survivors of the extinction are represented by Faunas preserved on Anticosti Island. which remained submerged during the regression. This evidence supports regression as a cause of the Rawtheyan extinctions in North America. The end-Hirnantian extinctions may be related to the ensuing transgression or to a wave of faunal migrations associated with the transgression. * Bryozoa, extinctions, Ordovician, Rawtheyan, Hirnantian, North America, Baltica .  相似文献   

9.
A concept of “stability” for equilibria of population models in randomly fluctuating environments, which takes into account the possibility of random jumps from one domain of attraction to another, is proposed. It is applied to a simple model of harvested populations, and related to May's well-known “stability” criterion.  相似文献   

10.
Exposures across the Cretaceous-Tertiary (K-T) and Eocene-Oligocene (E-O) boundaries, in Texas and Mississippi, respectively, probably represent the most complete and best-preserved fossil molluscan sequences across these boundary intervals in the world. Outcrops from both boundaries contain pristine aragonitic and calcitic molluscan shells, which were deposited in fine-grained sediments from open marine environments. The K-T and the E-O extinctions exhibit very different recovery patterns, probably reflecting very different causes as well as magnitudes of extinction.The K-T sequence contains a molluscan fossil record that is consistent with an abrupt extinction event at the K-T boundary and a prolonged initial recovery in hostile oceanographic conditions. The uppermost 10 m of Upper Cretaceous sediments contain a diverse (approximately 40 species) molluscan fauna dominated by suspension feeders. The earliest Paleocene sediments immediately above the tsunami bed contain an impoverished fauna dominated by deposit feeders. The Paleocene fauna slowly climbs in diversity but remains relatively impoverished and dominated by deposit feeders for several hundred thousand years after the extinction in conjunction with anomalous δ13C values that suggest prolonged suppression of marine primary productivity. Diverse suspension-feeder dominated molluscan assemblages reappear with the resumption of normal conditions of primary production. In the long term, early to middle Paleocene gamma diversity includes evolutionary “bloom taxa,” families that exhibit unusual speciation bursts that subside in the Eocene. Total diversity for the Gulf Coast does not approach Cretaceous levels until the Late Eocene representing a total recovery interval of nearly 25 million years.While the E-O event also reflects a molluscan extinction rate of over 90% in the Gulf of Mexico, there are no signs of hostile environmental conditions in the recovery fauna. Early Oligocene molluscan assemblages are diverse and dominated by suspension feeders characteristic of normal marine conditions. The hiatus at the E-O boundary, however, could have obscured a short-term recovery fauna. There is also no sign of long-term perturbation by the E-O extinction. There are no bloom taxa and gamma diversity approaches pre-extinction levels within a few million years. The overall pattern of the E-O extinction is consistent with extinction (and/or migration) associated with long-term cooling.  相似文献   

11.
12.
13.
Local extinctions of populations, species or groups of species in a particular area are commonly observed by biologists. There are also historical records of the total extinction of single species such as the Dodo, the Great Auk and the Tasmanian Wolf. Mass extinctions are on a much larger scale, and their study is based on the fossil record. The aims of this review are to explore the nature of mass extinctions and their evolutionary significance. The key questions are: what is mass extinction, what are the causes of mass extinctions, do mass extinctions follow a regular pattern, and how do mass extinctions affect our understanding of evolutionary processes?  相似文献   

14.
Deforestation and bird extinctions in the Atlantic forest   总被引:1,自引:0,他引:1  
  相似文献   

15.
Two qualitative taxonomic characters are potentially compatible if the states of each can be ordered into a character state tree in such a way that the two resulting character state trees are compatible. The number of potentially compatible pairs (NPCP) of qualitative characters from a data set may be considered to be a measure of its phylogenetic randomness. The value of NPCP depends on the number of evolutionary units (EUs), the number of characters, the number of states in the characters, the distributions of EUs among these states, and the amount and distribution of missing information and so does not directly indicate degree of phylogenetic randomness. Thus, for an observed data set, we used Monte Carlo methods to estimate the probability that a data set chosen equiprobably from among those identical (with respect to all the other above determining features) to the observed data set would have as high (or low) an NPCP as the observed data set. This probability, the realized significance of the observed NPCP, is attractive as an indication of phylogenetic randomness because it does not require the assumptions made by other such methods: No character state trees are assumed and consequently, only potential compatibility can be determined; no particular method of phylogenetic estimation is assumed; and no phylogenetic trees are constructed. We determined the values and significances of NPCP for analyses of 57 data sets taken from 53 published sources. All data sets from 37 of those sources exhibited realized significances of < 0.01, indicating high levels of phylogenetic nonrandomness. From each of the remaining 16 sources, at least one data set was more phylogenetically random. Inclusion of outgroups changed significance in some cases, but not always in the same direction. Data sets with significantly low NPCP may be consistent with an ancient hybrid origin (or other ancient polyphyletic gene exchange, crossing over, viral transfer, etc.) of the study group.  相似文献   

16.

Aim

Climate change affects forest functioning not only through direct physiological effects such as modifying photosynthesis and growing season lengths, but also through indirect effects on community composition related to species extinctions and colonizations. Such indirect effects remain poorly explored in comparison with the direct ones. Biodiversity–ecosystem functioning (BEF) studies commonly examine the effects of species loss by eliminating species randomly. However, species extinctions caused by climate change will depend on the species’ vulnerability to the new environmental conditions, thus occurring in a specific, non‐random order. Here, we evaluated whether successive tree species extinctions, according to their vulnerability to climate change, impact forest functions differently than random species losses.

Location

Eleven temperate forests across a gradient of climatic conditions in central Europe.

Methods

We simulated tree community dynamics with a forest succession model to study the impact of species loss on the communities’ aboveground biomass, productivity and temporal stability. Tree species were removed from the local pool (1) randomly, and according to (2) their inability to be recruited under a warmer climate or (3) their increased mortality under drier conditions.

Results

Results showed that non‐random species loss (i.e., based on their vulnerability to warmer or drier conditions) changed forest functioning at a different rate, and sometimes direction, than random species loss. Furthermore, directed extinctions, unlike random, triggered tipping points along the species loss process where forest functions were strongly impacted. These tipping points occurred after fewer extinctions in forests located in the coldest areas, where ecosystem functioning relies on fewer species.

Main conclusions

We showed that the extinction of species in a deterministic and mechanistically motivated order, in this case the species vulnerability to climate change, strengthens the selection effect of diversity on ecosystem functioning. BEF studies exploring the impact of species loss on ecosystem functioning using random extinctions thus possibly underestimate the potential effect of biodiversity loss when driven by a directional force, such as climate change.
  相似文献   

17.
The extinction of species before they are discovered and named (dark extinction, DE) is widely inferred as a significant part of species loss in the ‘pre-taxonomic’ period (approx. 1500–1800 CE) and, to some extent, in the ‘taxonomic period’ (approx. 1800–present) as well. The discovery of oceanic islands and other pristine habitats by European navigators and the consequent introduction of destructive mammals, such as rats and goats, started a process of anthropogenic extinction. Much ecosystem change happened before systematic scientific recording, so has led to DE. Statistical methods are available to robustly estimate DE in the ‘taxonomic period’. For the ‘pre-taxonomic period’, simple extrapolation can be used. The application of these techniques to world birds, for example, suggests that approximately 56 DEs occurred in the ‘taxonomic period’ (1800–present) and approximately 180 in the ‘pre-taxonomic period’ (1500–1800). Targeting collection activities in extinction hotspots, to make sure organisms are represented in collections before their extinction, is one way of reducing the number of extinct species without a physical record (providing that collection efforts do not themselves contribute to species extinction).  相似文献   

18.
Markov chain models predict the consequences of experimental extinctions   总被引:1,自引:0,他引:1  
Predicting the effects of species extinction is challenging because of ecosystem complexity. Using novel long‐term experimental deletions of two mussel species, I found that a multi‐species Markov chain model, which was parameterized under non‐experimental conditions, accurately predicted the effects of local extinction in an intertidal community. Systematically deleting species from the model predicted declining ecosystem biomass with reduced biodiversity, but relatively constant ecosystem resilience following disturbance. The effects of reduced biodiversity on these variables ranged widely, illustrating the need for species‐specific predictions of extinction effects. The results show that Markov chain models can be useful tools for predicting consequences of local species extinction without extensive experimentation.  相似文献   

19.
Research on the functional anatomy of visual cortical circuits has recently zoomed in from the macroscopic level to the microscopic. High-resolution functional imaging has revealed that the functional architecture of orientation maps in higher mammals is built with single-cell precision. By contrast, orientation selectivity in rodents is dispersed on visual cortex in a salt-and-pepper fashion, despite highly tuned visual responses. Recent studies of synaptic physiology indicate that there are disjoint subnetworks of interconnected cells in the rodent visual cortex. These intermingled subnetworks, described in vitro, may relate to the intermingled ensembles of cells tuned to different orientations, described in vivo. This hypothesis may soon be tested with new anatomic techniques that promise to reveal the detailed wiring diagram of cortical circuits.  相似文献   

20.
The selective extinction of the dinosaurs and other giant reptiles has long been a topic of speculation and controversy. Everyone is familiar with the theory of the giant bollide colliding with Earth. But, would it not be more likely that that multiple factors acted over a relatively long period of time to produce this mass extinction?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号