首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The transfer of hybrid plasmid RP4::PT (where PT is the genome of a transposable phage specific for Pseudomonas aeruginosa) into recipient cells of P. putida strain PpG1 occurs with the same frequency as into P. aeruginosa, the homologous host for PT. Approximately 1/3 of all PpG1 exconjugants carrying RP4 markers lost the capability to produce viable PT phage. In contrast, in a cross with homologous recipient P. aeruginosa all exconjugant clones contained nondefective prophages in the hybrid plasmids. Zygotic induction is an obligatory condition for detection of PpG1 exconjugants with defective phages. The defective prophages in RP4::PT hybrid plasmids have deletions of different size; the other carry mutations indistinguishable from point mutations in an essential phage gene. Some of deletions also cover plasmid genes. At least some of the defective prophages, including deleted ones, have arisen in the recipient cells of P. putida after transfer of the hybrid plasmid.  相似文献   

2.
The wild type of D3112, a transposable phage of Pseudomonas aeruginosa can not be introduced as a portion of the hybrid plasmid RP4::D3112 into Pseudomonas putida cells. It is only possible when phage D3112 carries mutations designated lpc (lethal for P. putida and Escherichia coli). Analysis of heteroduplex molecules between DNAs of phages D3112w+ and D3112lpc demonstrated the absence of nonhomology regions, which suggests that lpc is a point mutation. The lpc2 mutation was located within the interval 20-29.9 kb of the phage genome.  相似文献   

3.
The possibility of using a model system (which included RP4::Mu plasmid and D3112 phage in Pseudomonas aeruginosa cells) for analysis of compatibility of transposable Escherichia coli phage Mu and P. aeruginosa phage D3112, as phages and transposons, was studied. No interaction was observed during the vegetative growth of phages. The majority of the hybrid RP4::Mu plasmids lost the Mu DNA after insertion of D3112 into RP4::Mu. The phenomenon was not a result of transposition immunity. We consider the loss of the Mu DNA as a consequence either of plasmid RP4::Mu instability in P. aeruginosa cells, because of the lack of functional Mu repressor, or of some D3112-encoded activity involved in its transposition. For the inambiguous conclusion on compatibility of two phages as transposons, it is necessary to modify the model system, eliminating the possibility of Mu phage replication--transposition.  相似文献   

4.
We have found an inhibiting effect of hybrid RP4::D3112 plasmid (where D3112 is represented as genome of a transposable phage specific for Pseudomonas aeruginosa) on the development of temperate P. putida phage PP56. The study of the effect has revealed a previously unknown locus (in the region 12-14.2 kb of the D3112 genome) which functions in the prophage state. The locus affects PP56 decreasing phage yield. Mutants of PP56 insensitive to inhibition were found.  相似文献   

5.
Several hybrid RP4 plasmids containing the genome of heat-inducible D3112cts15 phage integrated into 2 different sites of RP4 were selected. It was shown that the plasmids RP4::D3112cts15 mobilized the chromosome of Pseudomonas aeruginosa from many sites located in different chromosome regions. Chromosomal recombinants are, formed at frequencies of about 10(-4) per recipient cell. Analysis of coinheritance of unselected markers showed that the majority of recombinants inherited short donor chromosome fragments (about 5 min). R' plasmids can be easily selected by mating with a rec- recipient. For instance, the frequency of selection of R' plasmids containing argH+ locus was about 10(-5) per donor cell. Conjugative transfer of RP4::D3112cts15 into nonlysogenic strains PAO P. aeruginosa results in partial or complete loss of prophage from a hybrid plasmid. The RP4::D3112cts15 plasmids appear to have retained the broad host range of the original RP4 (they are maintained in P. putida and Escherichia coli).  相似文献   

6.
Bacterial cells lysogenic for D3112, a transposable Pseudomonas aeruginosa phage restrict the growth of a related heteroimmune B39 phage. The lysogens are divided into two different types PAO(D3112). In the lysogens of the type I the efficiency of B39 growth only decreases slightly, the lysogens of the type II restricting completely the growth of this phage (e.o.p. is less than 10(-7). As shown by the results of Southern hybridization experiments, lysogens of the type I are monolysogens, while those of the type II are double or polylysogens. Restriction of B39 in PAO(D3112) is caused by expression of a locus in the D3112 genome. The locus has been termed as cip (control of interaction of phages). The cip locus was mapped at the interval 1.3-2.45 kb of the D3112 physical map using different deletion derivatives of D3112. Expression of cip only takes place in the prophage state and not during the phage lytic development. When expressed, cip affects the early steps in the growth of B39 lowering the level of integration and transposition processes; the effect is not dependent on the way of initiation of the lytic cycle (through prophage induction or infection).  相似文献   

7.
14 new transposable phages (TP) were isolated from approx. 200 clinical isolates of Pseudomonas aeruginosa. The frequent occurrence of TP of P. aeruginosa has been confirmed. There are at least two different groups of TP, namely, the group of D3112 and that of B3. The distinctive features of phages belonging to the groups are as follows: 1) low level of DNA-DNA homology (less than 10%), the whole region of homology in phage genomes of different groups being located on right genome end (29-38 kb); only one of phages of the B3 group shows an additional homology with D3112 DNA outside the above mentioned region; 2) a variable DNA is observed on the left end of the B3 group phage genomes and no such DNA is revealed on the left end of genomes of the D3112 group phages; 3) all phages of the B3 group have specific type of interaction with RPL11 plasmid, which distinguish them from phages of the D3112 group; 4) phages belonging to the two groups differ greatly in their growth in cells harbouring pMG7 plasmid which mediates production of PaeR7 endonuclease and in the number of DNA sites sensitive to SalGI, PstI, BglII endonucleases. Since some of the B3 group phage genomes possess BamH1 sites, resistance to this enzyme cannot be regarded as a general characteristics for all TP of P. aeruginosa, as it was earlier proposed. Some aspects of modular hypothesis of bacteriophage evolution concerning, in particular, the ways of module formation are discussed.  相似文献   

8.
The hybrid plasmid RP4::D3112 becomes unstable in Escherichia coli K-12 cells under certain growth conditions. The deletion mutants of this plasmid are formed at a high frequency. All the deletions selected have a specific feature: they start in the left end, at the point of joining of plasmid and phage DNA, and remove different portions of the phage genome. The deletion mutants have been used for genetic mapping of D3112. We have localized the repressor gene cI (0-1.3 kb), 3 early genes (1.3-14.2 kb) and two groups of late genes (14.2-29.9 and 29.9-38 kb). Electron microscope studies of RP4::D3112 DNA and its deletion derivatives have shown that integration of D3112 genome in RP4 occurs through the ends of the genome, without permutations. It appears that bacterial nucleotide sequences joined to DNA from mature D3112 particles, to the right end of D3112 genome, are lost. Thus, transposable phages D3112 of Pseudomonas aeruginosa and E. coli Mu phage have some similarities in the genome organization and in the way of their integration into the host DNA.  相似文献   

9.
The processes of replication and transposition of Pseudomonas aeruginosa transposable phage D3112 in cells of Escherichia coli (D3112) and E. coli (RP4::D3112) were studied. D3112 genome is a "silent cassette" ("conex-phage"--conditionally expressible) in E. coli cells incubated at 42 degrees C. Two compulsory conditions for D3112 genome expression are incubation at 30 degrees C and the presence in cells of RP4 plasmid. Processes of replication and transposition in E. coli are coupled. RP4 plasmid stimulates D3112 DNA synthesis in E. coli at least by two order of magnitude. In correspondence with this observation is the fact that when Mg2+ is present in high concentration (0.1 M) in a cultural medium, the production of mature phage is enhanced by two order of magnitude in E. coli (RP4::D3112) or in E. coli (D3112, RP4) cells, and is approx. 10(-1)-10(-2) phage per cell. No influence of Mg on phage production is observed in E. coli (D3112) cells.  相似文献   

10.
The behavior of Escherichia coli cells carrying RP4 plasmid which contains the genome of a Mu-like D3112 phage specific for Pseudomonas aeruginosa was studied. Two different types of D3112 genome expression were revealed in E. coli. The first is BP4-dependent expression. In this case, expression of certain D3112 genes designated as "kil" only takes place when RP4 is present. As a result, cell division stops at 30 degrees C and cells form filaments. Cell division is not blocked at 42 degrees C. The second type of D3112 genome expression is RP4-independent. A small number of phage is produced independently of RP4 plasmid but this does not take place at 42 degrees C. No detectable quantity of the functionally active repressor of the phage was determined in E. coli (D3112). It is possible that the only cause for cell stability of E. coli (D3112) or E. coli (RP4::D3112) at 42 degrees C in the absence of the repressor is the fact of an extremely poor expression of D3112. In another heterologous system, P. putida both ways of phage development (lytic and lysogenic) are observed. This special state of D3112 genome in E. coli cells is proposed to be named "conditionally expressible prophage" or, in short, "conex-phage", to distinguish it from a classical lysogenic state when stability is determined by repressor activity. Specific blockade of cell division, due to D3112 expression, was also found in P. putida cells. It is evident that the kil function of D3112 is not specific to recognize the difference between division machinery of bacteria belonging to distinct species or genera. Protein synthesis is needed to stop cell division and during a short time period this process could be reversible. Isolation of E. coli (D3112) which lost RP4 plasmid may be regarded as an evidence for D3112 transposition in E. coli. Some possibilities for using the system to look for E. coli mutants with modified expression of foreign genes are considered.  相似文献   

11.
Mit'kina LN  Krylov VN 《Genetika》2000,36(10):1330-1339
Properties of natural hybrid transposable phages (TP) of Pseudomonas aeruginosa, including phage PL24 and lysogens for this phage, were studied. PL24 possesses the properties of TP from two previously described groups, B3 and D3112. Its genome, unlike the genome of D3112, contains many sites susceptible to the SalGI restriction endonuclease and possesses no more than 100 nucleotides of bacterial origin located at the left genome end. However, unlike B3, phage PL24 failed to induce auxotrophic mutants upon integration in the bacterial genome. This phage differed from both B3 and D3112 in sensitivity to chloroform treatment. A more detailed examination of a group containing 25 randomly isolated lysogens for phage PL24 revealed previously unknown processes occurring at early stages of bacterial lysogenization. There are at least two different modes of cell lysogenization with phage PL24. In the first case, the emerging lysogens contained a single prophage genome located (in each lysogen) at individual sites. In the second case, polylysogenic bacteria appeared, and, after primary integration of a phage genome, replicative transposition occurred at new sites (often accompanied by the appearance of prophage clusters at these sites). The choice of the mode of lysogenization can be determined both by differences in the physiological state of bacteria and by specific features of phage PL24, which possibly affect the time of repressor accumulation to the concentration sufficient for blocking phage growth or the stability of the lysogenic state.  相似文献   

12.
Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 were found to require pili for infection. Seventy mutants of P. aeruginosa PAO selected by resistance to D3112 or B3 were also resistant to the phage not used in the selection and suggested that the receptors of these two phages are identical. Of five resistant mutants examined, all were defective in the production of pili and did not adsorb either phage. P. aeruginosa PAK strains altered in pilus expression, such as hyperpiliated or nonpiliated mutants, adsorbed the phage but were not productively infected, implying that an additional host function was required for infection. The cell-associated lipopolysaccharide was not required for D3112 or B3 infection, since mutants deficient in O side-chain and core biosynthesis were still capable of adsorption and productive infection. This is in contrast to Escherichia coli mutator phages Mu and D108, which are dependent on lipopolysaccharide for adsorption. The P. aeruginosa phages adsorbed only to cells grown on solid media or in liquid media supplemented with agents that increase the macroviscosity, such as polyvinylpyrrolidone. Adsorption time course studies of D3112 and B3 using cells grown in solid media revealed similar but not identical adsorption patterns. These studies suggested that expression of the D3112 and B3 cell receptor is induced by growth on solid media.  相似文献   

13.
Hybrid plasmids obtained as a result of Mu phage insertions into the RP4::D3112 plasmid in Escherichia coli cells were studied. Stable maintenance of RP4::D3112 plasmid in E. coli cells was provided by using the D3112 phage genome with a point polar mutation in the A gene which prevented early genes' expression. The presence of D3112A- in the RP4 plasmid has been shown to have no effect on efficiency of phage Mu transposition into this plasmid. Moreover, RP4 and D3112 genomes were equivalent targets for Mu integration. The integration of transposable phage into genome of nonrelated phage can be used as one of the approaches to construct recombinant phage genomes in vivo in the absence of DNA homology.  相似文献   

14.
Small bacteriophage D3112 transposable elements deleted for most of the phage-lytic functions while retaining the sites required for transposition and packaging were constructed to facilitate genetic studies in Pseudomonas aeruginosa. These mini-D derivatives were constructed with the terminal 1.85 kilobases (kb) of the phage left end and 1.4 kb of the phage right end and either the Tn5 kanamycin resistance or the pSC101 (pBR322) tetracycline resistance determinant. Thermally induced lysates of strains lysogenic for both a mini-D element and D3112 cts (temperature-sensitive repressor) transduced P. aeruginosa PAO recipients to drug resistance at frequencies of between 10(-4) and 10(-5)/PFU of the helper phage. As for the parent plaque-forming D3112 phage, the mini-D171 element could insert itself into many different sites in the chromosome but the frequency of insertion into particular genes varied widely. Among 1,000 insertions, none resulted in auxotrophy but 10 resulted in pigment production. Insertions were also selected in a cloning plasmid with a transduction scheme. At least eight different insertion sites were found to have been used among 10 individual insertions. Transductants harboring these mini-D elements were immune to infection by D3112, since they contained the D3112 repressor gene in the left 1.85-kb terminal fragment. Chromosomal genes were transduced in a generalized fashion 100 to 1,000 times more frequently by the mini-D-D3112 cts lysates than by the D3112 cts phage alone. Mini-D171-D3112 cts lysates also yielded some transductants that retained the drug resistance marker of the mini-D element and which were unstable for the chromosomal transduced marker. This is consistent with the miniduction properties of Mu whereby transduced genes are flanked by two mini-D elements in the same orientation.  相似文献   

15.
16.
More than 170 phage-resistant mutants (PRM) of the first order of Pseudomonas putida strain PpG1 were obtained using newly isolated and previously described bacteriophages specific for this strain. According to the results of analysis of resistance of the mutants to each of 31 phages of PpG1 strain and 8 phages of the PpN strain, the PRM strains were distributed into 20 groups. In most cases, the reason for resistance is loss of absorption capacity of bacteria. However, no direct relation between the level of absorption and efficiency of phage plating was detected. It was shown that some of the PRM of P. putida PpG1 strains acquired the ability to maintain the growth of phages specific for the other P. putida strain, PpN. Frequencies of isolating mutants of various resistance types depend on the concrete phage used. In accordance with their absorption specificity, all phages were distributed into 23 groups, and a tridimensional formal scheme of receptor sites for these phages on the PpG1 strain was drawn. In the process of selection of the PpG1 clones resistant to non-lysogenizing mutant of temperate PP71 phage, a variant of this strain manifesting the phenomenon of "auto-plaquing" was found. These results support the mutational origin of this phenomenon in some cases.  相似文献   

17.
It has been shown that D3112 prophage can be integrated into different chromosomal sites of Pseudomonas aeruginosa. The other Mu-like phages (B3, B39, PM69) are capable to insert their genomes during infection process into the plasmids RPL11, RMS148, RMS163. Their integration is occasionally accompanied by formation of mutations in plasmid genes. The certain types of auxotrophic and morphological mutants (thi, met, pigmented, met - pigmented) can be found at a frequency about 10% among survivors after a long (48 h) incubation at 42 degrees C of PAO (D3112cts15) or PAO (B39cts1) lysogens. The spectrum of mutants might depend on the time of heat induction. After a short exposure (10-20 min), arg and pigmented mutants can be found. Accumulation of certain kinds of mutants after heat induction is quite a specific phenomenon for Mu-like phages; heat induction of PAO (F116ts245) does not lead to selection of these specific bacterial mutants (F116 is unrelated to Mu-like phages and has extrachromosomal location).  相似文献   

18.
It has been demonstrated that the genome of phage D3112 of Preudomonas aeruginosa can be transposed into Escherichia coli chromosome as a component of the hybrid plasmid RP4 TcrKms::D3112. Also, transposition of D3112 from E. coli (D3112) chromosome into RP4 plasmid occurs. The phage stimulates the chromosome mobilizing activity of RP4 plasmid, similar to other transposons. E. coli (RP4::D3112) cells were previously shown to form no colonies at 30 degrees C. Auxotrophic mutants and mutants incapable of utilizing different carbohydrates were found among E. coli clones survived after a long incubation at 30 degrees C (at frequencies approximately 10(-3) - 10(-4). These mutants inherited stably the capability to produce D3112 phage. E. coli auxotrophic mutants have arisen indeed as a consequence of phage integration into the E. coli chromosome, since prototrophic transductants derived from these mutants after their treatment with generalized transducing P1 phage have lost the ability to produce D3112 phage. Clones with mutations in Km or Tc genes of RP4 plasmid, occurring at high frequencies (about 3%) were found after introduction of RP4 into E. coli (D3112). These mutant RP4 plasmids carry insertions of D3112 genomes. Clones of E. coli which lost mutant plasmids still produce D3112 and retain their initial auxotrophic mutations.  相似文献   

19.
We have isolated several new temperate bacteriophages for rhizosphere pseudomonads Pseudomonas putida. Examination of these phages, along with two previously isolated temperate phages PP56 and PP71 of P. putida PpG1 (biovar A), allowed us to classify them into four species on the basis of DNA cross-homology; relative genomic size; and, to a certain extent, the morphology of phage particles. Two of these species are represented by nonidentical variants. No transposable phages were found among these two new species. Three phage species cause various-types of lysogenic conversion manifested in growth suppression of other phage species. This seems to account for the fact that the temperate phage of rhizosphere pseudomonads are seldom encountered. The new phages described can be used for selection of phage-resistant bacterial forms exhibiting antifungal activity that are commercially produced and used for treatment of seeds of cultivated plants.  相似文献   

20.
The nucleotide sequence (2682 bp) of the left end of the Mu-like transposable bacteriophage D3112 cts15 from Pseudomonas aeruginosa was determined. A 720 bp open reading frame (ORF) is located on the bottom strand (positions 892-173), potentially encoding a polypeptide of 240 residues (Mr = 26,329). Specific binding of Escherichia coli Integration Host Factor (IHF) to a site located 907-922 bp from the D3112 left end suggests the existence of a P. aeruginosa IHF and its role, as in Mu, in the regulation of phage development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号