首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Intracranial implantation experiments have shown that the ventromedial hypothalamus (VMH) is the most sensitive site for the facilitation of female sexual behavior by progesterone in estrogen-primed rats. However, similar implantation techniques have been much less successful in hamsters. Several lines of evidence indicate that both hypothalamic and midbrain structures are important for hamster lordosis. Therefore we compared the effect of progesterone (P) implants administered simultaneously to VMH and ventral midbrain on opposite sides of the brain to the effects of bilateral implants to each of these sites separately. Ovariectomized female hamsters were stereotaxically implanted with 24-gauge thin-wall guide tubes according to one of five patterns. Bilaterally symmetrical cannulae were aimed at VMH or ventral mesencephalon (vMES) or asymmetrical implants were aimed at one of the following pairs of sites, on opposite sides of the brain: VMH-vMES, VMH-preoptic area (VMH-POA), or anterior hypothalamus-anterior mesencephalon (AH-aMES). After recovery from surgery, females were primed with 10 micrograms estradiol benzoate and given pellets of P or cholesterol through a 30-gauge injector in the targeted sites. Latency, frequency, and duration of lordosis were recorded in 10-min tests with sexually active male hamsters. Sexual receptivity was significantly facilitated by simultaneous contralateral P implants into the VMH-vMES. P implants in any other combination of sites did not significantly facilitate lordosis compared to cholesterol control implants, nor did bilateral administration of this dose of P in either VMH or vMES have a reliable effect. The results support the hypothesis that P action is required in both VMH and vMES to reliably stimulate receptivity in hamsters.  相似文献   

2.
《Organogenesis》2013,9(2):278-288
Purpose: To evaluate the morphological and histological changes induced by PGA scaffold seeded with autologous adipose or muscle derived stem cells implanted on rabbit bladder wall. Material and Methods: Adipose derived stem cells (ADSCs) were obtained from the inguinal fat of eight rabbits and muscle derived stem cells (MDSCs) from the anterior tibial muscle of other eight rabbits. After culture and isolation, the cells were stained with Vybrant Red CM DiI and then implanted at third passage. Two PGA scaffolds were implanted on the bladder submucosa of each animal. On the right bladder side was implanted unseeded PGA scaffold while on the left side was implanted ADSCs or skeletal MDSCs seeded PGA scaffold. ADSCs were implanted in eight animals and MDSC in other eight animals. The animals were sacrificed at four and eight weeks. Histological evaluation was performed with Hematoxylin and Eosin, Masson's Trichrome and smooth muscle α-actin. Results: We observed a mild inflammatory response in all the three groups. Seeded scaffolds induced higher lymphocytes and lower polimorphonuclear migration than controls. Fibrosis was more pronounced in the control groups. Smooth muscle α-actin was positive only in ADSC and MDSC seeded scaffolds. At four and eight weeks ADCSs and skeletal MDSCs labeled cells were found at the implant sites. Conclusions: The implantation of PGA scaffolds seeded with ADSC and MDSC induced less fibrosis than control and smooth muscle regeneration.  相似文献   

3.
Studies were carried out on cats by bipolar electrodes implanted into symmetrical points of somatosensory cortical areas, caudate nuclei, hippocampus, lateral geniculate bodies, reticular formation of the midbrain after section of the half of midbrain tegmentum and commissural systems of the brain. Animals with sections usually have asymmetry of sleep EEG. The phenomenon is revealed of the coexistence of slow-wave and paradoxal sleep in different brain halves.  相似文献   

4.
The CNS sites of action for progesterone facilitation of female sexual behavior are disputed. Among the areas most often cited are the ventromedial hypothalamus and the ventral midbrain. There is also a controversy about whether estradiol may substitute for progesterone for the facilitation of receptive behavior when given systemically or intracranially. We tested VMH and ventral midbrain applications of estradiol versus progesterone for the facilitation of female sexual behavior in estrogen-primed, ovariectomized female rats. Subjects were implanted with bilateral guide tubes aimed at ventral hypothalamic or midbrain sites. Estrogen-primed rats received either 28-gauge insert cannulae filled at the lumen with pure progesterone, estradiol, or cholesterol, or empty tubes, and were tested for receptivity with intact, experienced stud males just before, and 1 and 4 hr after, intracranial hormone administration. Significant estrous responsiveness was seen only in the 4-hr test after progesterone was implanted in the VMN in the first intracranial cannula test. We conclude, in contrast to some previous reports, that administration of progesterone to the VMN is more effective in the facilitation of female sexual behavior than when it is implanted in the ventral midbrain, and that administration of estradiol to either site is ineffective.  相似文献   

5.
One of the strategies of treating Parkinson’s disease (PD) is the replacement of lost neurons in the substantia nigra with healthy dapamingergic cells. Potential sources for cells range from autologous grafts of dopamine secreting cells, fetal ventral mesencephalon tissue, to various stem cell types. Over the past quarter century, many experimental replacement therapies have been tried on PD animal models as well as human patients, yet none resulted in satisfactory outcomes that warrant wide applications. Recent progress in stem cell biology has shown that nuclear transfer embryonic stem cells (ntES) or induced pluripotent stem cells (iPS) derived cells can be used to successfully treat rodent PD models, thus solving the problem of immunorejection and paving the way for future autologous transplantations for treating PD. Meanwhile, however, post mortem analysis of patients who received fetal brain cell transplantation revealed that implanted cells are prone to degeneration just like endogenous neurons in the same pathological area, indicating long-term efficacy of cell therapy of PD needs to overcome the degenerating environment in the brain. A better understanding of neurodegeneration in the midbrain appeared to be a necessary step in developing new cell therapies in Parkinson’s disease. It is likely that future cell replacement will focus on not only ameliorating symptoms of the disease but also trying to slow the progression of the disease by either neuroprotection or restoring the micro-environment in the midbrain. Support by the National Key Basic Research and Development Program of China (Grant No. 2006CB0F0603) and Science and Technology Plan, Beijing Municipal Science & Technology Commission (Grant No. H020220010290)  相似文献   

6.
Purpose: To evaluate the morphological and histological changes induced by PGA scaffold seeded with autologous adipose or muscle derived stem cells implanted on rabbit bladder wall. Material and Methods: Adipose derived stem cells (ADSCs) were obtained from the inguinal fat of eight rabbits and muscle derived stem cells (MDSCs) from the anterior tibial muscle of other eight rabbits. After culture and isolation, the cells were stained with Vybrant Red CM DiI and then implanted at third passage. Two PGA scaffolds were implanted on the bladder submucosa of each animal. On the right bladder side was implanted unseeded PGA scaffold while on the left side was implanted ADSCs or skeletal MDSCs seeded PGA scaffold. ADSCs were implanted in eight animals and MDSC in other eight animals. The animals were sacrificed at four and eight weeks. Histological evaluation was performed with Hematoxylin and Eosin, Masson's Trichrome and smooth muscle α-actin. Results: We observed a mild inflammatory response in all the three groups. Seeded scaffolds induced higher lymphocytes and lower polimorphonuclear migration than controls. Fibrosis was more pronounced in the control groups. Smooth muscle α-actin was positive only in ADSC and MDSC seeded scaffolds. At four and eight weeks ADCSs and skeletal MDSCs labeled cells were found at the implant sites. Conclusions: The implantation of PGA scaffolds seeded with ADSC and MDSC induced less fibrosis than control and smooth muscle regeneration.  相似文献   

7.
The development of the scratch reflex was studied in newborn (up to 2 months old) rabbits in norm and after elimination or activation of some parts of their nervous system (reticular formation, cerebellum, caudate nucleus, cerebral cortex, superior cervical sympathetic ganglia). The experiments with the section of the brain stem at the border between the medulla and the midbrain showed that in very young (5-10 days old) rabbits in norm the scratch reflex is controlled by the spinal cord with no influences of structures situated above the section's level. Later on the spinal mechanism of the scratch reflex becomes subject to supraspinal influences, among which in 2-3 weeks old animals facilitatory effects are predominant produced, in particular, by the reticular formation and the cerebellum, whereas in older age prevail inhibitory influences of the cerebral cortex, cerebellum, caudate nucleus and the sympathetic nervous system.  相似文献   

8.
Abstract: 45Ca2+ uptake by synaptosomes isolated from cerebral cortex, cerebellum, midbrain, and brain stem of male Sprague-Dawley rats was measured at 1-, 3-, 5-, 15-, 30-, and 60-s time periods. The fastest rate of depolarization-dependent calcium uptake occurred in each brain region between 0 and 1 s. Uptake rates dropped off quickly with 3–5-s rates at approximately 15–20% of those observed at 0–1 s in cerebral cortex, cerebellum, and midbrain. Uptake rates at the 1–3-s interval were maintained at a relatively high rate in these three brain regions suggesting mixed fast- and slow-phase processes. The magnitude and rate of 45Ca2+ uptake were similar in synaptosomes from cerebral cortex, cerebellum, and midbrain but were significantly less in brain stem synaptosomes. These results suggest a fast and a slow component to voltage-dependent 45Ca2+ uptake by presynaptic nerve terminals from various brain regions.  相似文献   

9.
In awake mobile rabbits, with electrodes implanted in the medial lemniscus, midbrain tegmental reticular nucleus, and pyramidal tract, combined stimulation of two brain of two brain structures resulted in elaboration of conditional connections in sensorimotor cortex neuronal populations. The main criterion of the conditioning was the appearance of changes in the neuronal activity on omission of the second stimulus. These changes represented a complex of electrical events, some of which were similar to and others different from the evoked responses to the second stimulus. Application of atropine, sulfate, chlorpromazine hydrochloride, serotonin creatinine sulfate, and gamma-aminobutyric acid (GABA) to the cortex at the site of the recording exerted a modulating effect on the conditional neuronal activity patterns. Of the above substances, GABA and atropine had the most pronounced effect. The GABA removed the short-latency components of the conditional changes which were similar to evoked responses. The atropine abolished the long-latency changes which differed from evoked responses.  相似文献   

10.
Alzheimer’s disease is the most common form of dementia and is structurally characterized by brain atrophy and loss of brain volume. Aβ is one of the widely accepted causative factors of AD. Aβ deposition is positively correlated with brain atrophy in AD. In the present study, structural brain imaging techniques such as Magnetic Resonance Imaging (MRI) were used to measure neuroanatomical alterations in Alzheimer’s disease brain. MRI is a non-invasive method to study brain structure. The objective of the present study was to elucidate the role of Aβ on brain structure in the aged rabbit brain. Among 20 aged rabbits, one batch (n = 10) rabbits was injected chronically with Aβ(1-42) and another batch (n = 10) with saline. The MRI was conducted before Aβ(1-42)/saline injection and after 45 days of Aβ(1-42)/saline injection. All the aged rabbits underwent MRI analysis and were euthanized after 45 days. The MRI results showed a significant reduction in thickness of frontal lobe, hippocampus, midbrain, temporal lobe and increases in the lateral ventricle volume. We also conducted an MRI study on AD (n = 10) and normal (n = 10) cases and analyzed for the thicknesses of frontal lobe, hippocampus, midbrain, temporal lobe and lateral ventricle lobe. We found significant reductions in thickness of the frontal lobe and the hippocampus. However, no significant reduction in the thickness of midbrain, temporal lobe or increase in the lateral ventricle volume was observed compared to normal. Correlations in brain atrophy changes between rabbit brain and human AD brain were found for frontal lobe and hippocampal regions. In contrast, other regions such as midbrain, temporal lobe, and lateral ventricles were not correlated with rabbit brain atrophy changes in the corresponding regions. The relevance of these changes in AD is discussed.  相似文献   

11.
Expression and monooxygenase activity of various cytochrome P450 (CYP) enzymes along with constitutive androstane (CAR) and the pregnane X (PXR) receptors were investigated in the brain of control and phenobarbital-treated rabbits (80 mg/kg for 4 days). RT-PCR analysis, using specific primers, demonstrated that in control rabbits mRNAs of CYP 2A10, 2B4/5 and 3A6 were expressed, though to a different extent, in the liver, as well as in brain cortex, midbrain, cerebellum, striatum, hippocampus and hypothalamus, whilst CYP2A11 and 4B1 were not expressed in the hypothalamus. CAR was expressed in liver and all the brain regions examined, whereas the PXR was expressed only in liver and cortex. Real time RT-PCR analysis demonstrated that in vivo treatment with phenobarbital, in contrast with what happened in liver, did not induce the expression of CYP 2B4/5 mRNA in cortex, midbrain and cerebellum. NADPH cytochrome c reductase and some other enzymatic activities markers of CYP 2A, 2B, 3A and 4B activities were studied in liver microsomes as well as in microsomes and mitochondria of brain cortex, midbrain and cerebellum of control and phenobarbital-treated rabbits. In contrast to what was observed in liver, phenobarbital treatment did not induce the aforementioned monooxygenase activities in brain. However, we cannot exclude that a longer phenobarbital treatment may lead to a significant induction of CYP activities in brain. These findings indicated that brain CYPs, despite the presence of CAR, were resistant to phenobarbital induction, indicating a possible different regulation of these enzymes between brain and liver.  相似文献   

12.
In chronic experiments on cats with premezencaphalic section of the brain stem electrica stimulation of the posterior hypothalamus caused desynchronization of the electrical activity of the neocortex. After the isolated injury of the posterior hypothalamus a moderate electrical stimulation of the medical part of the midbrain reticular formation failed to cause any pronounced activation of the neocortex. The results obtained indicated an important role of the posterior hypothalamus in the function of the ascending activating system.  相似文献   

13.
Regulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-beta signaling as a crucial factor controlling these processes. At early developmental stages, TGF-beta signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/beta-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-beta signal activation counteracts Wnt-induced proliferation of midbrain neuroepithelial cells. Thus, TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.  相似文献   

14.
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells. This work was supported by the German Federal Ministry of Education and Research (BMBF no. 01GA0510 and no. 0312134) and by the Bavarian State Ministry of Sciences, Research and the Arts, "Forneurocell grant".  相似文献   

15.
《Hormones and behavior》2009,55(5):676-683
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

16.
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

17.
Regional patterning in the developing mammalian brain is partially regulated by restricted gene expression patterns within the germinal zone, which is composed of stem cells and their progenitor cell progeny. Whether or not neural stem cells, which are considered at the top of the neural lineage hierarchy, are regionally specified remains unknown. Here we show that the cardinal properties of neural stem cells (self-renewal and multipotentiality) are conserved among embryonic cortex, ganglionic eminence and midbrain/hindbrain, but that these different stem cells express separate molecular markers of regional identity in vitro, even after passaging. Neural stem cell progeny derived from ganglionic eminence but not from other regions are specified to respond to local environmental cues to migrate ventrolaterally, when initially deposited on the germinal layer of ganglionic eminence in organotypic slice cultures. Cues exclusively from the ventral forebrain in a 5 day co-culture paradigm could induce both early onset and late onset marker gene expression of regional identity in neural stem cell colonies derived from both the dorsal and ventral forebrain as well as from the midbrain/hindbrain. Thus, neural stem cells and their progeny are regionally specified in the developing brain, but this regional identity can be altered by local inductive cues.  相似文献   

18.
The distribution of immunoreactive alpha-melanocyte stimulating hormone (alpha-MSHI) in the rat lower brain stem was examined by indirect immunofluorescence or peroxidase- anti-peroxidase immunohistochemical method using an antiserum against synthetic alpha-MSH. The results confirmed the presence of alpha-MSHI fibers in the midbrain central gray matter and parabrachial area, and demonstrated a much more extensive distribution of these fibers in various parts of the lower brain stem areas previously thought not contain alpha-MSHI fibers. In addition, the commissural nucleus was identified as a new alpha-MSHI neurons-containing site. No alpha-MSHI neurons were seen in other regions of the rat lower brain stem.  相似文献   

19.
We have provided data relating Cd concentration in tissue to about a 40-fold range in blood Cd concentration. Osmotic pumps containing cadmium chloride were subcutaneously implanted in male New Zealand white rabbits. The pumps continuously delivered either 0.15 or 1.5 mg Cd/d. Blood and plasma levels of Cd were measured weekly throughout the study. After 28 d, the rabbits were killed and tissue concentrations of Cd determined by atomic absorption spectrophotometry. Less than 10% of the total Cd in the blood was carried in the plasma, the remainder was associated with the blood cells, where it was bound mainly to metallothionein. We found the blood and tissue levels of Cd were correlated for each tissue we investigated. There was a wide range in affinity of the tissues for Cd; liver and kidney had the highest Cd uptake, whereas brain affinity was about 500 times less than liver.  相似文献   

20.
电刺激麻醉家免延髓头端腹外侧区(rVLM)能诱发心外膜电图ST段明显抬高。刺激腓深神经能抑制这种反应。P5平面横断脑干、双侧电解损毁中脑中央灰质腹侧部(vPAG)或在双侧rVLM微量注射脑啡肽抗体后,均能明显减弱腓深神经的抑制作用。以上结果提示腓深神经能够抑制由rVLM诱发的心肌缺血反应。腓深神经的这种抑制效应可能有赖于中脑头端以上某些区域脑结构的完整,vPAG可能是这种抑制效应的中枢环节之一,延髓水平的脑啡肽可能参与这种抑制过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号