首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance.  相似文献   

2.
Thyroid hormone regulates food intake. We previously reported that rats with triiodothyronine (T3)-induced thyrotoxicosis display hyperphagia associated with suppressed circulating leptin levels, increased hypothalamic neuropeptide Y (NPY) mRNA and decreased hypothalamic pro-opiomelanocortin (POMC) mRNA. AMP-activated kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular energy is depleted. We hypothesized that T3 causes an increase in hypothalamic AMPK activity, which in turn contributes to the development of T3-induced hyperphagia. Rats that were given s.c. injections of T3 (4.5 nmol/kg) had increased food intake 2 h later without alterations in NPY and POMC mRNA levels, but with increased hypothalamic phosphorylated AMPK (169%) and phosphorylated acetyl-CoA carboxylase (194%). To determine the more chronic effects of T3, rats were given 6 daily s.c. injection of T3 or the vehicle. Food intake was significantly increased. Multiple T3 injections increased hypothalamic phosphorylated AMPK (278%) and phosphorylated acetyl-CoA carboxylase (335%) compared to the controls. Intracerebroventricular administration of compound C, an AMPK inhibitor, blocked the food intake induced by a single or multiple injections of T3. Taken together, these results suggest that enhanced hypothalamic AMPK phosphorylation contributes to T3-induced hyperphagia. Hypothalamic AMPK plays an important role in the regulation of food intake and body weight.  相似文献   

3.
Objective: To characterize a model of atypical antipsychotic drug‐induced obesity and evaluate its mechanism. Research Methods and Procedures: Chronically, olanzapine or clozapine was self‐administered via cookie dough to rodents (Sprague‐Dawley or Wistar rats; C57Bl/6J or A/J mice). Chronic studies measured food intake, body weight, adiponectin, active ghrelin, leptin, insulin, tissue wet weights, glucose, clinical chemistry endpoints, and brain dopaminergic D2 receptor density. Acute studies examined food intake, ghrelin, leptin, and glucose tolerance. Results: Olanzapine (1 to 8 mg/kg), but not clozapine, increased body weight in female rats only. Weight changes were detectable within 2 to 3 days and were associated with hyperphagia starting ~24 hours after the first dose. Chronic administration (12 to 29 days) led to adiposity, hyperleptinemia, and mild insulin resistance; no lipid abnormalities or changes in D2 receptor density were observed. Topiramate, which has reversed weight gain from atypical antipsychotics in humans, attenuated weight gain in rats. Acutely, olanzapine, but not clozapine, lowered plasma glucose and leptin. Increases in glucose, insulin, and leptin following a glucose challenge were also blunted. Discussion: A model of olanzapine‐induced obesity was characterized which shares characteristics of patients with atypical antipsychotic drug‐induced obesity; these characteristics include hyperphagia, hyperleptinemia, insulin resistance, and weight gain attenuation by topiramate. This model may be a useful and inexpensive model of uncomplicated obesity amenable to rapid screening of weight loss drugs. Olanzapine‐induced weight gain may be secondary to hyperphagia associated with acute lowering of plasma glucose and leptin, as well as the inability to increase plasma glucose and leptin following a glucose challenge.  相似文献   

4.
The administration of antipsychotic drugs to human patients or experimental animals leads to significant weight gain, which is widely presumed to be driven by hyperphagia; however, the contribution from energy expenditure remains unclear. These studies aim to examine the contribution of shifts in energy expenditure, particularly those involving centrally mediated changes in thermogenesis, to the body weight gain associated with the administration of olanzapine to female Sprague Dawley rats. Olanzapine (6 mg/kg/day orally) caused a transient increase in food intake but a maintained increase in body weight. When pair‐fed rats were treated with olanzapine, body weight continued to rise compared to vehicle‐treated rats, consistent with a reduction in energy expenditure. Brown adipose tissue (BAT) temperature, measured using biotelemetry devices, decreased immediately after the onset of olanzapine treatment and remained depressed, as did physical activity. UCP1 expression in interscapular BAT was reduced following chronic olanzapine treatment. An acute injection of olanzapine was preceded by an injection of a retrograde tracer into the spinal cord to evaluate the nature of the olanzapine‐activated neural pathway. Levels of Fos protein in a number of spinally projecting neurons within discrete hypothalamic and brainstem sites were elevated in olanzapine‐treated rats. Some of these neurons in the perifornical region of the lateral hypothalamus (LHA) were also Orexin A positive. These data collectively show a significant impact of thermogenesis (and physical activity) on the weight gain associated with olanzapine treatment. The anatomical studies provide an insight into the central neuroanatomical substrate that may subserve the altered thermogenic responses brought about by olanzapine.  相似文献   

5.
Many antipsychotics cause weight gain in humans, but usually not in rats, when injected once or twice daily. Since blood antipsychotic half-lives are short in rats, compared to humans, chronic administration by constant infusion may be necessary to see consistent weight gain in rats. Male and female rats were implanted with mini-pumps for constant infusion of olanzapine (5 mg/kg/day), clozapine (10 mg/kg/day) or vehicle for 11 days. Food intake and body weight were measured; blood drug levels were measured by HPLC. Olanzapine increased food intake and body weight in female, but not male rats. Serum olanzapine concentrations were 30-35 ng/ml. Clozapine had no effect on food intake or body weight in female or male rats. Serum clozapine concentrations were about 75 ng/ml. Single-dose pharmacokinetic analysis revealed a serum terminal half-life of 1.2-1.5 h for each drug, with no sex differences. Despite the fact that olanzapine and clozapine promote weight gain in humans, these drugs appear to have minimal effects on body weight and food intake in rats, except for a modest effect of olanzapine in female rats, even though therapeutic levels of olanzapine are achieved in serum during chronic infusion. Hence, the rapid clearance of drug following single administration in previous studies cannot explain the weak or absent effects of antipsychotics on weight gain in this species. The rat thus appears to be an inadequate model of weight gain produced by some antipsychotics in humans.  相似文献   

6.
Olanzapine is the one of first line antipsychotic drug for schizophrenia and other serious mental illness. However, it is associated with troublesome metabolic side-effects, particularly body weight gain and obesity. The antagonistic affinity to histamine H1 receptors (H1R) of antipsychotic drugs has been identified as one of the main contributors to weight gain/obesity side-effects. Our previous study showed that a short term (2 weeks) combination treatment of betahistine (an H1R agonist and H3R antagonist) and olanzapine (O+B) reduced (−45%) body weight gain induced by olanzapine in drug-naïve rats. A key issue is that clinical patients suffering with schizophrenia, bipolar disease and other mental disorders often face chronic, even life-time, antipsychotic treatment, in which they have often had previous antipsychotic exposure. Therefore, we investigated the effects of chronic O+B co-treatment in controlling body weight in female rats with chronic and repeated exposure of olanzapine. The results showed that co-administration of olanzapine (3 mg/kg, t.i.d.) and betahistine (9.6 mg/kg, t.i.d.) significantly reduced (−51.4%) weight gain induced by olanzapine. Co-treatment of O+B also led to a decrease in feeding efficiency, liver and fat mass. Consistently, the olanzapine-only treatment increased hypothalamic H1R protein levels, as well as hypothalamic pAMPKα, AMPKα and NPY protein levels, while reducing the hypothalamic POMC, and UCP1 and PGC-1α protein levels in brown adipose tissue (BAT). The olanzapine induced changes in hypothalamic H1R, pAMPKα, BAT UCP1 and PGC-1α could be reversed by co-treatment of O+B. These results supported further clinical trials to test the effectiveness of co-treatment of O+B for controlling weight gain/obesity side-effects in schizophrenia with chronic antipsychotic treatment.  相似文献   

7.
AMP-activated protein kinase (AMPK) functions as a fuel sensor in the cell and is activated when cellular energy is depleted. Here we report that alpha-lipoic acid (alpha-LA), a cofactor of mitochondrial enzymes, decreases hypothalamic AMPK activity and causes profound weight loss in rodents by reducing food intake and enhancing energy expenditure. Activation of hypothalamic AMPK reverses the effects of alpha-LA on food intake and energy expenditure. Intracerebroventricular (i.c.v.) administration of glucose decreases hypothalamic AMPK activity, whereas inhibition of intracellular glucose utilization through the administration of 2-deoxyglucose increases hypothalamic AMPK activity and food intake. The 2-deoxyglucose-induced hyperphagia is reversed by inhibiting hypothalamic AMPK. Our findings indicate that hypothalamic AMPK is important in the central regulation of food intake and energy expenditure and that alpha-LA exerts anti-obesity effects by suppressing hypothalamic AMPK activity.  相似文献   

8.
AimsWeight gain is a common outcome of antipsychotics therapy in schizophrenic patients. However, the underlying neuronal mechanisms are unclear. The present study was undertaken to investigate the role of GABAA receptors within the framework of nucleus accumbens shell (AcbSh) in haloperidol-induced hyperphagia and body weight gain in sated rats.Main methodsIn acute studies, GABAA receptor agonists muscimol, diazepam or antagonist bicuculline were administered by AcbSh route, alone or in combination with haloperidol (intraperitoneal/ip). Immediately after these treatments, preweighed food was offered to the animals at commencement of dark phase. Cumulative food intake was measured at 2 and 6 h post-injection time-points. Furthermore, effects of subacute haloperidol treatment, alone or in combination with muscimol, diazepam or bicuculline, on food intake and body weight were investigated.Key findingsWhile acute treatment with haloperidol, muscimol or diazepam dose dependently stimulated the food intake, bicuculline suppressed the same. Prior administration of muscimol (20 ng/rat, intra-AcbSh) and diazepam (5 µg/rat, intra-AcbSh) significantly potentiated, whereas bicuculline (40 ng/rat, intra-AcbSh) negated the hyperphagic effect of acute haloperidol (0.005 or 0.01 mg/kg/rat, ip). Subacute administration of haloperidol (0.01 mg/kg/rat/day, ip) for 15 days produced increase in food intake and body weight. Although, concomitant administration of muscimol (20 ng/rat/day, intra-AcbSh) or diazepam (5 μg/rat/day, intra-AcbSh) markedly enhanced, bicuculline (40 ng/rat/day, intra-AcbSh) prevented the subacute haloperidol-induced hyperphagia and weight gain.SignificanceThe results of present study suggest that increased food intake and body weight following haloperidol treatment in rats, may be mediated via AcbSh GABAA receptors.  相似文献   

9.
Many atypical antipsychotic drugs cause weight gain, but the mechanism of this weight gain is unclear. To dissect the role of the dopamine D2 receptor (D2R), an important receptor in the pharmacology of antipsychotic drugs, we analyzed the effect of olanzapine, risperidone, and ziprasidone on changes in body weight and food intake in male wild-type (WT) and D2R knockout (D2R−/−) mice. The oral delivery of atypical antipsychotics, olanzapine (5 and 10 mg/kg), risperidone (0.1 and 1.0 mg/kg) and ziprasidone (10 and 20 mg/kg) in both strains mice for 2 weeks suppressed body weight gain, except for olanzapine treatment in D2R−/− mice. Olanzapine treatment suppressed body weight gain and decreased food intake in WT mice, but also reduced fat body mass and locomotor activity, whereas D2R−/− mice did not show these changes. Ziprasidone and risperidone treatment produced similar responses in WT and D2R−/− mice. These data suggest the involvement of D2R in the effect of olanzapine on metabolic regulation. Further studies are required to explore the implications of D2R activity in antipsychotic-mediated metabolic complications.  相似文献   

10.
The atypical antipsychotic drug olanzapine induces weight gain and defects in glucose metabolism in patients. Using a rat model we investigated the effects of acute and long term olanzapine treatment on weight gain, food preference and glucose metabolism. Olanzapine treated rats fed a chow diet grew more slowly than vehicle controls but olanzapine treated animals fed a high fat/sugar diet grew faster than control animals on the same diet. These changes in weight were paralleled by changes in fat mass. Olanzapine also induced a strong preference for a high fat/high sugar diet. Acute exposure to olanzapine rapidly induced severe impairments of glucose tolerance and increased insulin secretion but did not impair insulin tolerance. These results indicate the defect in glucose metabolism induced by acute olanzapine treatment was most likely due to increased hepatic glucose output associated with a reduction in active GLP-1 levels and correspondingly high glucagon levels.  相似文献   

11.
AimsClinical use of olanzapine has been suggested to be associated with weight gain and adiposity in schizophrenic patients. While studies in experimental animals have noted weight gain in olanzapine-treated female rats, these findings have yet to be replicated in males. This study investigated the effect of chronic subcutaneous infusion of olanzapine in male rats via a recently developed electrical microinfusion pump.Main methodsAn electrical microinfusion pump was subcutaneously implanted in male Sprague–Dawley rats who were then chronically administered olanzapine. Plasma olanzapine concentration and body weight were monitored, and fat pads were weighed after six weeks' olanzapine treatment.Key findingsPlasma olanzapine concentration plateaued within 4 h of commencement of chronic olanzapine 1.5 mg/animal/day infusion and remained constant until day 21. Six-week infusion of olanzapine at 1.5 but not 1 mg/animal/day induced significant adiposity in subcutaneous, epididymal, and retroperitoneal fat. Body weight and food intake values did not differ between olanzapine- and vehicle-treated rats throughout the experiment.SignificanceThe present study demonstrated that chronic infusion of olanzapine induced adiposity in male rats without inducing weight gain or hyperphagia, even with sufficient plasma concentration. This report is the first to provide information about adiposity-inducible plasma concentration of olanzapine in male rats.  相似文献   

12.
The hypothalamic AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway is known to play an important role in the control of food intake and energy expenditure. Here, we hypothesize that citrate, an intermediate metabolite, activates hypothalamic ACC and is involved in the control of energy mobilization. Initially, we showed that ICV citrate injection decreased food intake and diminished weight gain significantly when compared to control and pair-fed group results. In addition, we showed that intracerebroventricular (ICV) injection of citrate diminished (80% of control) the phosphorylation of ACC, an important AMPK substrate. Furthermore, citrate treatment inhibited (75% of control) hypothalamic AMPK phosphorylation during fasting. In addition to its central effect, ICV citrate injection led to low blood glucose levels during glucose tolerance test (GTT) and high glucose uptake during hyperglycemic-euglycemic clamp. Accordingly, liver glycogen content was higher in animals given citrate (ICV) than in the control group (23.3+/-2.5 vs. 2.7+/-0.5 microg mL(-1) mg(-1), respectively). Interestingly, liver AMPK phosphorylation was reduced (80%) by the citrate treatment. The pharmacological blockade of beta3-adrenergic receptor (SR 59230A) blocked the effect of ICV citrate and citrate plus insulin on liver AMPK phosphorylation. Consistently with these results, rats treated with citrate (ICV) presented improved insulin signal transduction in liver, skeletal muscle, and epididymal fat pad. Similar results were obtained by hypothalamic administration of ARA-A, a competitive inhibitor of AMPK. Our results suggest that the citrate produced by mitochondria may modulate ACC phosphorylation in the hypothalamus, controlling food intake and coordinating a multiorgan network that controls glucose homeostasis and energy uptake through the adrenergic system.  相似文献   

13.
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.  相似文献   

14.
This is the first study to examine the effect of subchronic olanzapine (OLZ) on energy homeostasis in rats, covering all aspects of energy balance, including energy intake as metabolizable energy, storage, and expenditure. We further analyzed whether, and by which mechanism, the CB1‐antagonist AVE1625 might attenuate OLZ‐induced body weight gain. For this purpose, we selected juvenile female Hanover Wistar rats that robustly and reproducibly demonstrated weight gain on OLZ treatment, accepting limitations to model the aberrations on lipid and carbohydrate metabolism. Rats received 2 mg/kg OLZ orally twice daily for 12 days. Body weight and body composition were analyzed. Moreover daily food intake, energy expenditure, and substrate oxidation were determined in parallel to motility and body core temperature. OLZ treatment resulted in substantial body weight gain, in which lean and fat mass increased significantly. OLZ‐treated rats showed hyperphagia that manifested in increased carbohydrate oxidation and lowered fat oxidation (FO). Energy expenditure was increased, motility decreased, but there was no indication for hypothermia in OLZ‐treated rats. Coadministration of OLZ and AVE1625 (10 mg/kg orally once daily) attenuated body weight gain, diminishing the enhanced food intake while maintaining increased energy expenditure and decreased motility. Our data reveal that energy expenditure was enhanced in OLZ‐treated rats, an effect not critically influenced by motility. Energy uptake, however, exceeded energy expenditure and led to a positive energy balance, confirming hyperphagia as the major driving factor for OLZ‐induced weight gain. Combination of OLZ treatment with the CB1‐antagonist AVE1625 attenuated body weight gain in rats.  相似文献   

15.
Hypothalamic serotonin inhibits food intake and stimulates energy expenditure. High-fat feeding is obesogenic, but the role of polyunsaturated fats is not well understood. This study examined the influence of different high-PUFA diets on serotonin-induced hypophagia, hypothalamic serotonin turnover, and hypothalamic protein levels of serotonin transporter (ST), and SR-1B and SR-2C receptors. Male Wistar rats received for 9 weeks from weaning a diet high in either soy oil or fish oil or low fat (control diet). Throughout 9 weeks, daily intake of fat diets decreased such that energy intake was similar to that of the control diet. However, the fish group developed heavier retroperitoneal and epididymal fat depots. After 12 h of either 200 or 300 μg intracerebroventricular serotonin, food intake was significantly inhibited in control group (21–25%) and soy group (37–39%) but not in the fish group. Serotonin turnover was significantly lower in the fish group than in both the control group (−13%) and the soy group (−18%). SR-2C levels of fish group were lower than those of control group (50%, P = 0.02) and soy group (37%, P = 0.09). ST levels tended to decrease in the fish group in comparison to the control group (16%, P = 0.339) and the soy group (21%, P = 0.161). Thus, unlike the soy-oil diet, the fish-oil diet decreased hypothalamic serotonin turnover and SR-2C levels and abolished serotonin-induced hypophagia. Fish-diet rats were potentially hypophagic, suggesting that, at least up to this point in its course, the serotonergic impairment was either compensated by other factors or not of a sufficient extent to affect feeding. That fat pad weight increased in the absence of hyperphagia indicates that energy expenditure was affected by the serotonergic hypofunction.  相似文献   

16.
Hibernators exhibit a robust circannual cycle of body mass gain and loss primarily mediated by food intake, but the pathways controlling food intake in these animals have not been fully elucidated. Ghrelin is an orexigenic hormone that increases feeding in all mammals studied so far, but has not until recently been studied in hibernators. In other mammals, ghrelin stimulates feeding through phosphorylation and activation of AMP-activated protein kinase (AMPK). Activation of AMPK phosphorylates and deactivates acetyl Co-A carboxylase (ACC), a committed step in fatty acid synthesis. In order to determine the effects of exogenous ghrelin on food intake and metabolic factors (i.e. non-esterified fatty acids (NEFAs), and hypothalamic AMPK and ACC) in hibernators, ghrelin was peripherally injected into ground squirrels in all four seasons. Changes in food intake and body mass were recorded over a 2-6 hour period post injections, and squirrels were euthanized. Brains and blood were removed, and Western blots were performed to determine changes in phosphorylation of hypothalamic AMPK and ACC. A colorimetric assay was used to determine changes in concentration of serum NEFAs. We found that food intake, body mass, and locomotor activity significantly increased with ghrelin injections versus saline-injected controls, even in animals injected during their aphagic winter season. Injected ghrelin was correlated with increased phosphorylation of AMPK, but didn't have an effect on ACC in winter. Ghrelin-injected animals also had increased levels of serum NEFAs compared with saline controls. This study is the first to show an effect of injected ghrelin on a hibernator.  相似文献   

17.
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100 μg/kg body weight, ip) or repeated injections of LPS over 6 days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40 μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200 ng/μl in 5 μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.  相似文献   

18.
Hypothalamic concentrations of neuropeptide Y (NPY), a potent central appetite stimulant, increase dramatically in food-restricted and insulin-deficient diabetic rats. This suggest that NPY may drive hyperphagia in these conditions, which are characterized by weight loss and insulin deficiency. To test the hypothesis that insulin deficiency and weight loss are specific stimuli to hypothalamic NPY, we measured NPY concentrations in individual hypothalamic regions in rats with hyperphagia caused by insulin-induced hypoglycemia. Groups of 8 male Wistar rats were injected with ultralente insulin (20-60 U/kg) to induce either acute hypoglycemia (7 h after a single injection) or chronic hypoglycemia (8 days with daily injections). In hypoglycemic rats, plasma insulin concentrations were increased 6- to 7-fold compared with saline-injected controls; food intake was significantly increased with acute and chronic hypoglycemia and weight gain was significantly increased in the chronically hypoglycemic group. NPY concentrations were measured by radioimmunoassay in 8 hypothalamic regions microdissected from fresh brain slices. NPY concentrations were not increased in any region in either acute or chronic hypoglycemia. NPY therefore seems unlikely to mediate hyperphagia in hyperinsulinemia-induced hypoglycemia, supporting the hypothesis that weight loss is a specific stimulus to hypothalamic NPY and that insulin deficiency may be the metabolic signal responsible.  相似文献   

19.
Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.  相似文献   

20.
Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed. Hypothalamic proopiomelanocortin (POMC) neurons have been identified as the main regulator of metabolism and energy expenditure. Although the relation between POMC neurons and metabolic disorders is well established, little is known about the effects of olanzapine and metformin on hypothalamic POMC neurons. In the present study, we investigated the effect of olanzapine and metformin on the hypothalamic POMC neurons in female mice. Olanzapine administration for 5 days significantly decreased Pomc mRNA expression, POMC neuron numbers, POMC projections, and induced leptin resistance before the onset of obesity. It was also observed that coadministration of metformin with olanzapine not only increased POMC neuron numbers and projections but also improved the leptin response of POMC neurons in the olanzapine-treated female mice. These findings suggest that olanzapine-induced hypothalamic POMC neuron abnormality and leptin resistance, which can be ameliorated by metformin administration, are the possible causes of subsequent hyperphagia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号