首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Plants respond to environmental changes by acclimation that activates defence mechanisms and enhances the plant''s resistance against a subsequent more severe stress. Chloroplasts play an important role as a sensor of environmental stress factors that interfere with the photosynthetic electron transport and enhance the production of reactive oxygen species (ROS). One of these ROS, singlet oxygen (1O2), activates a signalling pathway within chloroplasts that depends on the two plastid-localized proteins EXECUTER 1 and 2. Moderate light stress induces acclimation protecting photosynthetic membranes against a subsequent more severe high light stress and at the same time activates 1O2-mediated and EXECUTER-dependent signalling. Pre-treatment of Arabidopsis seedlings with moderate light stress confers cross-protection against a virulent Pseudomonas syringae strain. While non-pre-acclimated seedlings are highly susceptible to the pathogen regardless of whether 1O2- and EXECUTER-dependent signalling is active or not, pre-stressed acclimated seedlings without this signalling pathway lose part of their pathogen resistance. These results implicate 1O2- and EXECUTER-dependent signalling in inducing acclimation but suggest also a contribution by other yet unknown signalling pathways during this response of plants to light stress.  相似文献   

2.
3.
Singlet oxygen (1O2) is a by‐product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1O2‐overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1O2 signalling pathway involves the endoplasmic reticulum (ER)‐mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR‐inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light‐induced cell death. Conversely, light acclimation of ch1 to 1O2 stress put a limitation in the high light‐induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1O2 induces the ER‐mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1O2, and a strong activation of the whole UPR is associated with cell death.  相似文献   

4.
5.
6.
Proton transfer involving internal water molecules that provide hydrogen bonds and facilitate proton diffusion has been identified in some membrane proteins. Arg-94 in cytochrome b of the Rhodobacter sphaeroides bc1 complex is fully conserved and is hydrogen-bonded to the heme propionate and a chain of water molecules. To further elucidate the role of Arg-94, we generated the mutations R94A, R94D, and R94N. The wild-type and mutant bc1 complexes were purified and then characterized. The results show that substitution of Arg-94 decreased electron transfer activity and proton pumping capability and increased O2˙̄ production, suggesting the importance of Arg-94 in the catalytic mechanism of the bc1 complex in R. sphaeroides. This also suggests that the transport of H+, O2, and O2˙̄ in the bc1 complex may occur by the same pathway.  相似文献   

7.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

8.
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light.  相似文献   

9.
Mitochondrial structure has a central role both in energy conversion and in the regulation of cell death. We have previously shown that IF1 protects cells from necrotic cell death and supports cristae structure by promoting the oligomerisation of the F1Fo-ATPsynthase. As IF1 is upregulated in a large proportion of human cancers, we have here explored its contribution to the progression of apoptosis and report that an increased expression of IF1, relative to the F1Fo-ATPsynthase, protects cells from apoptotic death. We show that IF1 expression serves as a checkpoint for the release of Cytochrome c (Cyt c) and hence the completion of the apoptotic program. We show that the progression of apoptosis engages an amplification pathway mediated by: (i) Cyt c-dependent release of ER Ca2+, (ii) Ca2+-dependent recruitment of the GTPase Dynamin-related protein 1 (Drp1), (iii) Bax insertion into the outer mitochondrial membrane and (iv) further release of Cyt c. This pathway is accelerated by suppression of IF1 and delayed by its overexpression. IF1 overexpression is associated with the preservation of mitochondrial morphology and ultrastructure, consistent with a central role for IF1 as a determinant of the inner membrane architecture and with the role of mitochondrial ultrastructure in the regulation of Cyt c release. These data suggest that IF1 is an antiapoptotic and potentially tumorigenic factor and may be a valuable predictor of responsiveness to chemotherapy.  相似文献   

10.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

11.
12.
Z Chen  G Wang  X Zhai  Y Hu  D Gao  L Ma  J Yao  X Tian 《Cell death & disease》2014,5(4):e1164
Apoptosis is a major mode of cell death occurring during ischemia–reperfusion (I/R) induced injury. The p66Shc adaptor protein, which is mediated by PKCβ, has an essential role in apoptosis under oxidative stress. This study aimed to investigate the role of PKCβ2/p66Shc pathway in intestinal I/R injury. In vivo, ischemia was induced by superior mesenteric artery occlusion in mice. Ruboxistaurin (PKCβ inhibitor) or normal saline was administered before ischemia. Then blood and gut tissues were collected after reperfusion for various measurements. In vitro, Caco-2 cells were challenged with hypoxia–reoxygenation (H/R) to simulate intestinal I/R. Translocation and activation of PKCβ2 were markedly induced in the I/R intestine. Ruboxistaurin significantly attenuated gut damage and decreased the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Pharmacological blockade of PKCβ2 suppressed p66Shc overexpression and phosphorylation in the I/R intestine. Gene knockdown of PKCβ2 via small interfering RNA (siRNA) inhibited H/R-induced p66Shc overexpression and phosphorylation in Caco-2 cells. Phorbol 12-myristate 13-acetate (PMA), which stimulates PKCs, induced p66Shc phosphorylation and this was inhibited by ruboxistaurin and PKCβ2 siRNA. Ruboxistaurin attenuated gut oxidative stress after I/R by suppressing the decreased expression of manganese superoxide dismutase (MnSOD), the exhaustion of the glutathione (GSH) system, and the overproduction of malondialdehyde (MDA). As a consequence, ruboxistaurin inhibited intestinal mucosa apoptosis after I/R. Therefore, PKCβ2 inhibition protects mice from gut I/R injury by suppressing the adaptor p66Shc-mediated oxidative stress and subsequent apoptosis. This may represent a novel therapeutic approach for the prevention of intestinal I/R injury.  相似文献   

13.
Singlet oxygen (1O2)-mediated signaling has been established in the conditional fluorescent (flu) mutant of Arabidopsis. In the dark, the flu mutant accumulates free protochlorophyllide (Pchlide), a photosensitizer that in the light generates 1O2. The release of 1O2 leads to growth inhibition of mature plants and bleaching of seedlings. These 1O2-mediated responses depend on two plastid proteins, EXECUTER (EX) 1 and 2. An ex1/ex2/flu mutant accumulates in the dark Pchlide and upon illumination generates similar amounts of 1O2 as flu, but 1O2-mediated responses are abrogated in the triple mutant. The 1O2- and EX-dependent signaling pathway operates also in wild type placed under light stress. However, it does not act alone as in flu, but interacts with other signaling pathways that modulate 1O2-mediated responses. Depending on how severe the light stress is, 1O2- and EX-dependent signaling may be superimposed by 1O2-mediated signaling that does not depend on EX and is associated with photo-oxidative damage. Because of its high reactivity and short half-life, 1O2 is unlikely to be a signal that is translocated across the chloroplast envelope, but is likely to interact with other plastid components close to its site of production and to generate more stable signaling molecules during this interaction. Depending on the site of 1O2 production and the severity of stress, different signaling molecules may be expected that give rise to different 1O2-mediated responses.  相似文献   

14.
15.
Exogenous oxidative stress induces cell death, but the upstream molecular mechanisms involved of the process remain relatively unknown. We determined the instant dynamic reactions of intracellular reactive oxygen species (ROS, including hydrogen peroxide (H2O2), superoxide radical (O2), and nitric oxide (NO)) in cells exposed to exogenous oxidative stress by using a confocal laser scanning microscope. Stimulation with extracellular H2O2 significantly increased the production of intracellular H2O2, O2, and NO (P < 0.01) through certain mechanisms. Increased levels of intracellular ROS resulted in mitochondrial dysfunction, involving the impairment of mitochondrial activity and the depolarization of mitochondrial membrane potential. Mitochondrial dysfunction significantly inhibited the proliferation of human hepatoblastoma G2 (HepG2) cells and resulted in mitochondrial cytochrome c (cyt c) release. The results indicate that upstream ROS signals play a potential role in exogenous oxidative stress-induced cell death through mitochondrial dysfunction and cyt c release.  相似文献   

16.
17.
18.
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.  相似文献   

19.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

20.
Oxidative stress remodels Ca2+ signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca2+/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca2+ signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca2+ current (ICa,L) in rat cardiomyocytes. A 5-min exposure of 1 mM H2O2 induced an increase in ICa,L, and this increase was sustained for ~ 1 h. The CaMKII inhibitor KN-93 fully reversed H2O2-induced LTF of ICa,L, indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca2+ release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H2O2 via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号