首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

Atopic dermatitis (AD) is the most prevalent chronic inflammatory skin disease in children characterized by dermatitis and pruritus. MicroRNAs (miRNAs) have been shown as great potential biomarkers for disease fingerprints to predict prognostics. We aimed to identify miRNA signature from serum and urine for the prognosis of AD patient by genome-wide miRNA profiling analysis.

Methods

Serum and urine from 30 children with AD and 28 healthy children were collected and their genome-wide miRNA expression profiles were measured by TaqMan-based array and confirmed by quantitative real-time PCR. Inflammatory factors in serum were detected by Antibody Array System.

Results

miR-203 and miR-483-5p were significantly up-regulated in serum of children with AD compared with healthy children. The level of miR-483-5p in serum was significantly associated with other atopic conditions, such as rhinitis and/or asthma. However, miR-203 was markedly decreased in urine of children with AD compared with healthy children. Down-regulated miR-203 in urine was significant associated with abnormal level of serum IgE in AD patients. 7 inflammatory factors in serum were altered in children with AD compared with healthy children. Up-regulated miR-203 in serum was significantly associated with increased sTNFRI and sTNFRII.

Conclusions

Up-regulated miR-483-5p in serum may be indicative of other atopic conditions in children with AD. Down-regulated miR-203 in urine may serve as a biomarker for the severity of inflammation in children with AD.  相似文献   

2.

Background

Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.

Methods

A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non−CHB-related cirrhosis and controls as validation sets, respectively.

Results

A profile of 2 miRNAs (miR-106b and miR-181b) was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non−CHB-related cirrhosis in another validation set).

Conclusion

Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.  相似文献   

3.
Z Yan  Y Xiong  W Xu  J Gao  Y Cheng  Z Wang  F Chen  G Zheng 《PloS one》2012,7(7):e40037

Background

Gastric cancer (GC) is one of the most common malignancy and primary cause of death in Chinese cancer patients. Recurrence is a major factor leading to treatment failure and low level of 5-year survival rate in GC patients following surgical resection. Therefore, identification of biomarkers with potential in predicting recurrence risk is the key problem of the prognosis in GC patients.

Patients and Methods

A total of 74 GC patients were selected for systematic analysis, consisting of 31 patients with recurrence and 43 patients without recurrence. Firstly, miRNAs microarray and bioinformatics methods were used to characterize differential expressed miRNAs from primary tumor samples. Following, we used a ROC method to select signature with best sensitivity and specificity. Finally, we validated the signature in GC samples (frozen fresh and blood samples) using quantitative PCR.

Results

We have identified 12 differential miRNAs including 7 up-regulated and 5 down-regulated miRNAs in recurrence group. Using ROC method, we further ascertained hsa-miR-335 as a signature to recognize recurrence and non-recurrence cases in the training samples. Moreover, we validated this signature using quantitative PCR method in 64 test samples with consistent result with training set. A high frequency recurrence and poor survival were observed in GC cases with high level of hsa-miR-335 (P<0.001). In addition, we evaluated that hsa-miR-335 were involved in regulating target genes in several oncogenic signal-pathways, such as p53, MAPK, TGF-β, Wnt, ERbB, mTOR, Toll-like receptor and focal adhesion.

Conclusion

Our results indicate that the hsa-miR-335 has the potential to recognize the recurrence risk and relate to the prognosis of GC patients.  相似文献   

4.

Background and Purpose

Tissue microRNAs (miRNAs) can detect cancers and predict prognosis. Several recent studies reported that tissue, plasma, and saliva miRNAs share similar expression profiles. In this study, we investigated the discriminatory power of salivary miRNAs (including whole saliva and saliva supernatant) for detection of esophageal cancer.

Materials and Methods

By Agilent microarray, six deregulated miRNAs from whole saliva samples from seven patients with esophageal cancer and three healthy controls were selected. The six selected miRNAs were subjected to validation of their expression levels by RT-qPCR using both whole saliva and saliva supernatant samples from an independent set of 39 patients with esophageal cancer and 19 healthy controls.

Results

Six miRNAs (miR-10b*, miR-144, miR-21, miR-451, miR-486-5p, and miR-634) were identified as targets by Agilent microarray. After validation by RT-qPCR, miR-10b*, miR-144, and miR-451 in whole saliva and miR-10b*, miR-144, miR-21, and miR-451 in saliva supernatant were significantly upregulated in patients, with sensitivities of 89.7, 92.3, 84.6, 79.5, 43.6, 89.7, and 51.3% and specificities of 57.9, 47.4, 57.9%, 57.9, 89.5, 47.4, and 84.2%, respectively.

Conclusions

We found distinctive miRNAs for esophageal cancer in both whole saliva and saliva supernatant. These miRNAs possess discriminatory power for detection of esophageal cancer. Because saliva collection is noninvasive and convenient, salivary miRNAs show great promise as biomarkers for detection of esophageal cancer in areas at high risk.  相似文献   

5.

Purpose

Exosomal microRNAs (miRNAs) have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC). To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined.

Experimental Design

Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA) using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients.

Results

The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a) were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis.

Conclusion

Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and several miRNAs are promising biomarkers for non-invasive diagnosis of the disease.  相似文献   

6.

Background

Most (70%) epithelial ovarian cancers (EOCs) are diagnosed late. Non-invasive biomarkers that facilitate disease detection and predict outcome are needed. The microRNAs (miRNAs) represent a new class of biomarkers. This study was to identify and validate plasma miRNAs as biomarkers in EOC.

Methodology/Principal Findings

We evaluated plasma samples of 360 EOC patients and 200 healthy controls from two institutions. All samples were grouped into screening, training and validation sets. We scanned the circulating plasma miRNAs by TaqMan low-density array in the screening set and identified/validated miRNA markers by real-time polymerase chain reaction assay in the training set. Receiver operating characteristic and logistic regression analyses established the diagnostic miRNA panel, which were confirmed in the validation sets. We found higher plasma miR-205 and lower let-7f expression in cases than in controls. MiR-205 and let-7f together provided high diagnostic accuracy for EOC, especially in patients with stage I disease. The combination of these two miRNAs and carbohydrate antigen-125 (CA-125) further improved the accuracy of detection. MiR-483-5p expression was elevated in stages III and IV compared with in stages I and II, which was consistent with its expression pattern in tumor tissues. Furthermore, lower levels of let-7f were predictive of poor prognosis in EOC patients.

Conclusions/Significance

Our findings indicate that plasma miR-205 and let-7f are biomarkers for ovarian cancer detection that complement CA-125; let-7f may be predictive of ovarian cancer prognosis.  相似文献   

7.

Introduction

Pancreatic cancer (PCA) is an aggressive tumor that associates with high mortality rates. Majority of PCA patients are diagnosed usually at late tumor stages when the therapeutic options are limited. MicroRNAs (miRNA) are involved in tumor development and are commonly dysregulated in PCA. As a proof-of-principle study, we aimed to evaluate the potential of fecal miRNAs as biomarkers for pancreatic cancer.

Materials and Methods

Total RNA was extracted from feces using Qiagen''s miRNA Mini Kit. For miRNA expression analyses we selected a subset of 7 miRNAs that are frequently dysregulated in PCA (miR-21, -143, -155, -196a, -210, -216a, -375). Subsequently, expression levels of these miRNAs were determined in fecal samples from controls (n = 15), chronic pancreatitis (n = 15) and PCA patients (n = 15) using quantitative TaqMan-PCR assays.

Results

All selected miRNAs were detectable in fecal samples with high reproducibility. Four of seven miRNAs (miR-216a, -196a, -143 und -155) were detected at lower concentrations in feces of PCA patients when compared to controls (p<0.05). Analysis of fecal miRNA expression in controls and patients with chronic pancreatitis and PCA revealed that the expression of miR-216a, -196a, -143 und -155 were highest in controls and lowest in PCA. The expression of the remaining three miRNAs (miR-21, -210 and -375) remained unchanged among controls and the patients with either chronic pancreatitis or PCA.

Conclusion

Our data provide novel evidence for the differential expression of miRNAs in feces of patients with PCA. If successfully validated in large-scale prospective studies, the fecal miRNA biomarkers may offer novel tools for PCA screening research.  相似文献   

8.

Background

Dysregulation of microRNA (miRNA) expression in various tissues and body fluids has been demonstrated to be associated with several diseases, including Type 2 Diabetes mellitus (T2D). Here, we compare miRNA expression profiles in different tissues (pancreas, liver, adipose and skeletal muscle) as well as in blood samples from T2D rat model and highlight the potential of circulating miRNAs as biomarkers of T2D. In parallel, we have examined the expression profiles of miRNAs in blood samples from Impaired Fasting Glucose (IFG) and T2D male patients.

Methodology/Principal Findings

Employing miRNA microarray and stem-loop real-time RT-PCR, we identify four novel miRNAs, miR-144, miR-146a, miR-150 and miR-182 in addition to four previously reported diabetes-related miRNAs, miR-192, miR-29a, miR-30d and miR-320a, as potential signature miRNAs that distinguished IFG and T2D. Of these microRNAs, miR-144 that promotes erythropoiesis has been found to be highly up-regulated. Increased circulating level of miR-144 has been found to correlate with down-regulation of its predicted target, insulin receptor substrate 1 (IRS1) at both mRNA and protein levels. We could also experimentally demonstrate that IRS1 is indeed the target of miR-144.

Conclusion

We demonstrate that peripheral blood microRNAs can be developed as unique biomarkers that are reflective and predictive of metabolic health and disorder. We have also identified signature miRNAs which could possibly explain the pathogenesis of T2D and the significance of miR-144 in insulin signaling.  相似文献   

9.

Background

MicroRNAs (miRNAs) are regulatory RNAs, stable in circulation, and implicated in colorectal cancer (CRC) etiology and progression. Therefore they are promising as early detection biomarkers of colorectal neoplasia. However, many circulating miRNAs are highly expressed in blood cells, and therefore may not be specific to colorectal neoplasia.

Methods

We selected 7 miRNA candidates with previously reported elevated expression in adenoma tissue but low expression in blood cells (“rare” miRNAs), 2 previously proposed as adenoma biomarkers, and 3 implicated in CRC. We conducted a colonoscopy-based case-control study including 48 polyp-free controls, 43 advanced adenomas, 73 non-advanced adenomas, and 8 CRC cases. miRNAs from plasma were quantified by qRT-PCR. Correlations between miRNA expression levels, adjusted for age and sex, were assessed. We used polytomous logistic regression to estimate odds ratios (ORs) and 95% confidence intervals quantifying the association between expression levels of miRNAs and case groups. We also conducted nonparametric receiver operating characteristic (ROC) analyses and estimated area under the curve (AUC).

Results

miRNAs with high expression levels were statistically significantly correlated with one another. No miRNAs were significantly associated with non-advanced or advanced adenomas. Strong (ORs >5) and significant associations with CRC were observed for 6 miRNA candidates, with corresponding AUCs significantly >0.5.

Conclusions

These candidate miRNAs, assayed by qRT-PCR, are probably unsuitable as blood-based adenoma biomarkers. Strong associations between miRNAs and CRC were observed, but primarily with miRNAs highly expressed in blood cells. These results suggest that rare miRNAs will require new detection methods to serve as circulating biomarkers of adenomas.  相似文献   

10.

Background

In order to find novel noninvasive biomarkers with high accuracy for the screening of early-stage non-small cell lung cancer (NSCLC), we investigate the predictive power of 5 microRNAs (miR-20a, miR-145, miR-21, miR223 and miR-221) as potential biomarkers in early-stage NSCLC.

Methods

In training set, 25 early-stage NSCLC patients and 25 matched healthy controls are included to assess the miRNA expression profile between early-stage NSCLC patients and healthy controls by real-time RT-PCR. We found that five of these miRNAs (miR-20a, miR-223, miR-21, miR-221 and miR-145) levels in NSCLC patients were significantly dysregulated compared with the healthy groups and thus were selected to validation set. Therefore, a validation experiment was further performed to investigate the potential predictive power of these five miRNAs based on 126 early-stage NSCLC patients, 42 NCPD patients and 60 healthy controls. The receiver operating characteristic (ROC) curves were generated for the five miRNAs.

Results

ROC curve analyses suggested that these five plasma miRNAs could be promising biomarkers for NSCLC, with relatively high AUC values as follows: miR-20a, 0.89 with 95% CI of [0.85-0.93]; miR-223, 0.94 with 95% CI of [0.91-0.96]; miR-21, 0.77 with 95% CI of [0.71-0.83]; miR-155, 0.92 with 95% CI of [0.89-0.96]; miR-145, 0.77 with 95% CI of [0.71-0.83]. Stratified analyses indicated that plasma miR-20a, miR-223, miR-21 and miR-145 showed better predictive value in smokers than in non-smokers, while miR-155 might be more suitable for non-smokers. In addition, all of these five miRNAs could differentiate NSCLC from controls with a higher accuracy in advanced stage and squamous carcinoma subgroups.

Conclusions

In conclusion, our study suggested that five plasma miRNAs (miR-20a, miR-145, miR-21, miR-223 and miR-221) can be used as promising biomarkers in early screening of NSCLC. Nevertheless, further validation and optimizing improvement should be performed on larger sample to confirm our results.  相似文献   

11.

Background

Circulating microRNAs (miRNAs) are emerging as promising biomarkers for human cancer. Osteosarcoma is the most common human primary malignant bone tumor in children and young adults. The objective of this study was to investigate whether circulating miRNAs in plasma could be a useful biomarker for detecting osteosarcoma and monitoring tumor removal dynamics.

Methods

Plasma samples were obtained from 90 patients before surgery, 50 patients after one month of surgery, and 90 healthy individuals. The study was divided into three steps: First, initial screening of the profiles of circulating miRNAs in pooled plasma samples from healthy controls and pre-operative osteosarcoma patients using a TaqMan low density array (TLDA). Second, evaluation of miRNA concentration in individual plasma samples from 90 pre-operative osteosarcoma patients and 90 healthy controls by a quantitative real time PCR (qRT-PCR) assay. Third, evaluation of miRNA concentration in paired plasma samples from 50 pre- and post-operative osteosarcoma patients by qRT-PCR assay.

Results

Four plasma miRNAs including miR-195-5p, miR-199a-3p, miR-320a, and miR-374a-5p were significantly increased in the osteosarcoma patients. Receiver operating characteristics curve analysis of the combined populations demonstrated that the four-miRNA signature could discriminate cases from controls with an area under the curve of 0.9608 (95% CI 0.9307-0.9912). These 4 miRNAs were markedly decreased in the plasma after operation. In addition, circulating miR-195-5p and miR-199a-3p were correlated with metastasis status, while miR-199a-3p and miR-320a were correlated with histological subtype.

Conclusions

Our data suggest that altered levels of circulating miRNAs might have great potential to serve as novel, non-invasive biomarkers for osteosarcoma.  相似文献   

12.

Purpose

To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI and CSF biomarkers.

Methods

Altogether 391 MCI cases (158 AD converters) were selected from the ADNI cohort. All the cases had baseline cognitive tests, MRI and/or CSF levels of Aβ1–42 and Tau. Using baseline data, the status of MCI patients (AD or MCI) three years later was predicted using current diagnostic research guidelines and the PredictAD software tool designed for supporting clinical diagnostics. The data used were 1) clinical criteria for episodic memory loss of the hippocampal type, 2) visual MTA, 3) positive CSF markers, 4) their combinations, and 5) when the PredictAD tool was applied, automatically computed MRI measures were used instead of the visual MTA results. The accuracies of diagnosis were evaluated with the diagnosis made 3 years later.

Results

The PredictAD tool achieved the overall accuracy of 72% (sensitivity 73%, specificity 71%) in predicting the AD diagnosis. The corresponding number for a clinician’s prediction with the assistance of the PredictAD tool was 71% (sensitivity 75%, specificity 68%). Diagnosis with the PredictAD tool was significantly better than diagnosis by biomarkers alone or the combinations of clinical diagnosis of hippocampal pattern for the memory loss and biomarkers (p≤0.037).

Conclusion

With the assistance of PredictAD tool, the clinician can predict AD conversion more accurately than the current diagnostic criteria.  相似文献   

13.
14.

Introduction

MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls.

Methods

We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718).

Results

Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202.

Conclusions

MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use.  相似文献   

15.

Introduction

Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether these alterations were also observed in an independent data set.

Methods

Global miRNA analysis was performed on prospectively collected serum samples from 24 post-menopausal women with estrogen receptor-positive early-stage breast cancer before surgery and 3 weeks after tumor resection using global LNA-based quantitative real-time PCR (qPCR).

Results

Numbers of specific miRNAs detected in the samples ranged from 142 to 161, with 107 miRNAs detectable in all samples. After correction for multiple comparisons, 3 circulating miRNAs (miR-338-3p, miR-223 and miR-148a) exhibited significantly lower, and 1 miRNA (miR-107) higher levels in post-operative vs. pre-operative samples (p<0.05). No miRNAs were consistently undetectable in the post-operative samples compared to the pre-operative samples. Subsequently, our findings were compared to a dataset from a comparable patient population analyzed using similar study design and the same qPCR profiling platform, resulting in limited agreement.

Conclusions

A panel of 4 circulating miRNAs exhibited significantly altered levels following radical resection of primary ER+ breast cancers in post-menopausal women. These specific miRNAs may be involved in tumorigenesis and could potentially be used to monitor whether all cancer cells have been removed at surgery and/or, subsequently, whether the patients develop recurrence.  相似文献   

16.
Zhao H  Shen J  Medico L  Wang D  Ambrosone CB  Liu S 《PloS one》2010,5(10):e13735

Background

To date, there are no highly sensitive and specific minimally invasive biomarkers for detection of breast cancer at an early stage. The occurrence of circulating microRNAs (miRNAs) in blood components (including serum and plasma) has been repeatedly observed in cancer patients as well as healthy controls. Because of the significance of miRNA in carcinogenesis, circulating miRNAs in blood may be unique biomarkers for early and minimally invasive diagnosis of human cancers. The objective of this pilot study was to discover a panel of circulating miRNAs as potential novel breast cancer biomarkers.

Methodology/Principal Findings

Using microarray-based expression profiling followed by Real-Time quantitative Polymerase Cycle Reaction (RT-qPCR) validation, we compared the levels of circulating miRNAs in plasma samples from 20 women with early stage breast cancer (10 Caucasian American (CA) and 10 African American (AA)) and 20 matched healthy controls (10 CAs and 10 AAs). Using the significance level of p<0.05 constrained by at least two-fold expression change as selection criteria, we found that 31 miRNAs were differentially expressed in CA study subjects (17 up and 14 down) and 18 miRNAs were differentially expressed in AA study subjects (9 up and 9 down). Interestingly, only 2 differentially expressed miRNAs overlapped between CA and AA study subjects. Using receiver operational curve (ROC) analysis, we show that not only up-regulated but also down-regulated miRNAs can discriminate patients with breast cancer from healthy controls with reasonable sensitivity and specificity. To further explore the potential roles of these circulating miRNAs in breast carcinogenesis, we applied pathway-based bioinformatics exploratory analysis and predicted a number of significantly enriched pathways which are predicted to be regulated by these circulating miRNAs, most of which are involved in critical cell functions, cancer development and progression.

Conclusions

Our observations from this pilot study suggest that the altered levels of circulating miRNAs might have great potential to serve as novel, noninvasive biomarkers for early detection of breast cancer.  相似文献   

17.
18.

Background

We previously showed microRNAs (miRNAs) in plasma are potential biomarkers for colorectal cancer detection. Here, we aimed to develop specific blood-based miRNA assay for breast cancer detection.

Methodology/Principal Findings

TaqMan-based miRNA profiling was performed in tumor, adjacent non-tumor, corresponding plasma from breast cancer patients, and plasma from matched healthy controls. All putative markers identified were verified in a training set of breast cancer patients. Selected markers were validated in a case-control cohort of 170 breast cancer patients, 100 controls, and 95 other types of cancers and then blindly validated in an independent set of 70 breast cancer patients and 50 healthy controls. Profiling results showed 8 miRNAs were concordantly up-regulated and 1 miRNA was concordantly down-regulated in both plasma and tumor tissue of breast cancer patients. Of the 8 up-regulated miRNAs, only 3 were significantly elevated (p<0.0001) before surgery and reduced after surgery in the training set. Results from the validation cohort showed that a combination of miR-145 and miR-451 was the best biomarker (p<0.0001) in discriminating breast cancer from healthy controls and all other types of cancers. In the blind validation, these plasma markers yielded Receiver Operating Characteristic (ROC) curve area of 0.931. The positive predictive value was 88% and the negative predictive value was 92%. Altered levels of these miRNAs in plasma have been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS) cases was 96%.

Conclusions

These results suggested that these circulating miRNAs could be a potential specific biomarker for breast cancer screening.  相似文献   

19.

Background

The luminal A subtype of breast cancer has a good prognosis and is sensitive to endocrine therapy but is less sensitive to chemotherapy. It is necessary to identify biomarkers to predict chemosensitivity and avoid over-treatment. We hypothesized that miRNAs in the serum might be associated with chemosensitivity.

Methods

Sixty-eight breast cancer patients received neoadjuvant chemotherapy with epirubicin plus paclitaxel. The serum of the patients was collected before chemotherapy and stored at −80°C. The samples were classified into two groups in term of the chemosensitivity. We identified the differential expression patterns of miRNAs between the chemotherapy sensitive and resistant groups using microRNA profiling. Four miRNAs that were differentially expressed between the two groups were further validated in another 56 samples. We created a model fitting formula and a receiver operating characteristics (ROC) curve using logistic regression analysis to evaluate the prediction potency.

Results

We identified 8 miRNAs differentially expressed between the two groups: 6 miRNAs were up-regulated, and 2 miRNAs were down-regulated in the resistant group compared with the sensitive group. The expression of miR-19a and miR-205 were determined to have significant differences between the two groups (P<0.05). A predictive model of these two miRNAs was created by the logistic regression analysis. The probability of this model was 89.71%. Based on the ROC curve, the specificity was 75.00%, and the sensitivity was 81.25%.

Conclusions

The combination of miR-19a and miR-205 in the serum may predict the chemosensitivity of luminal A subtype of breast cancer to epirubicin plus paclitaxel neoadjuvant chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号