首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method that can pinpoint control DNA denaturation is reported. In the single molecule experiment using spFRET, DNA adhered on a quartz surface is acted upon by both a weak laser field force and a fast temporal mechanical force. The experiment showed that increasing strengths of laser power result in increasing percentage of denatured DNA; different mechanical forces produce different numbers of DNA opening. Besides the method’s simplicity and convenience for DNA melting, its crucial advantage and potential application is the ability to denature DNA at specified locations, i.e., a weak laser and a fast temporal mechanical force can be used in pinpoint denaturation of short DNA.  相似文献   

2.
Currently, standard protocols for microbial DNA extraction from intestinal tissues do not exist. We assessed the efficiency of a commercial kit with and without mechanical disruption. Better quality DNA was obtained without mechanical disruption. Thus, it appears that bead-beating is not required for efficient microbial DNA extraction from intestinal biopsies.  相似文献   

3.
Fiber X-ray diffraction and measurement of fibre dimensions yield information about the effects of a mechanical tension on hydration of DNA in fibres. At a given relative humidity, the mechanical tension changes the DNA conformation but does not modify the number of water molecules associated to a nucleotide. The number of water molecules per nucleotide necessary to maintain B form decreases for increasing tensions applied to the DNA fibre. Form transitions can be opposed by mechanical tensions; an energy of 1 Kcal per mole of nucleotide pairs is sufficient to prevent the B to A transition.  相似文献   

4.
Almost all nucleoprotein interactions and DNA manipulation events involve mechanical deformations of DNA. Extraordinary progresses in single-molecule, structural, and computational methods have characterized the average mechanical properties of DNA, such as bendability and torsional rigidity, in high resolution. Further, the advent of sequencing technology has permitted measuring, in high-throughput, how such mechanical properties vary with sequence and epigenetic modifications along genomes. We review these recent technological advancements, and discuss how they have contributed to the emerging idea that variations in the mechanical properties of DNA play a fundamental role in regulating, genome-wide, diverse processes involved in chromatin organization.  相似文献   

5.
During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).  相似文献   

6.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

7.
8.
An improved method to obtain high molecular weight DNA from purified macro- and micronuclei of Tetrahymena thermophila is described. Micro- and macronuclear DNA obtained using previously described protocols was degraded and not suitable for the cloning of large (> 100 kb) DNA fragments. Based on the data reported here, we propose that DNA degradation is mainly due to nuclease activity; some micronuclear DNA degradation is due to mechanical shearing as a result of extended periods of blending. We have made modifications to reduce nuclease degradation by minimizing cell lysis, by the early addition of EDTA and by increasing the EDTA concentration (23 mM). To reduce mechanical shearing, cell and nuclear suspensions were blended for shorter periods. High molecular weight micro- and macronuclear DNA was obtained using the new protocol.  相似文献   

9.
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.  相似文献   

10.
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.  相似文献   

11.
Mechanical lysis is an efficient and widely used method of liberating the contents of microbial cells, but the sensitivity of large nucleic acids to shear damage has prevented the application of mechanical lysis to DNA purification. It is demonstrated that polycationic compaction agents can protect DNA from shear damage and allow chromosomal and plasmid DNA purification by mechanical lysis. In addition to being substantially protected during mechanical lysis, the compacted DNA can be separated with the insoluble cell debris, washed, and selectively resolubilized, yielding a substantially purified DNA product. An additional benefit of this method is that lysate viscosity is greatly reduced, allowing the use of much smaller processing volumes when compared with traditional lysis methods used in nucleic acid purification.  相似文献   

12.
Recent advances in DNA nanotechnology led the fabrication and utilization of various DNA assemblies, but the development of a method to control their global shapes and mechanical flexibilities with high efficiency and repeatability is one of the remaining challenges for the realization of the molecular machines with on-demand functionalities. DNA-binding molecules with intercalation and groove binding modes are known to induce the perturbation on the geometrical and mechanical characteristics of DNA at the strand level, which might be effective in structured DNA assemblies as well. Here, we demonstrate that the chemo-mechanical response of DNA strands with binding ligands can change the global shape and stiffness of DNA origami nanostructures, thereby enabling the systematic modulation of them by selecting a proper ligand and its concentration. Multiple DNA-binding drugs and fluorophores were applied to straight and curved DNA origami bundles, which demonstrated a fast, recoverable, and controllable alteration of the bending persistence length and the radius of curvature of DNA nanostructures. This chemo-mechanical modulation of DNA nanostructures would provide a powerful tool for reconfigurable and dynamic actuation of DNA machineries.  相似文献   

13.
DNA intercalators bind nucleic acids by stacking between adjacent basepairs. This causes a considerable elongation of the DNA backbone as well as untwisting of the double helix. In the past few years, single-molecule mechanical experiments have become a common tool to characterize these deformations and to quantify important parameters of the intercalation process. Parameter extraction typically relies on the neighbor-exclusion model, in which a bound intercalator prevents intercalation into adjacent sites. Here, we challenge the neighbor-exclusion model by carefully quantifying and modeling the force-extension and twisting behavior of single ethidium-complexed DNA molecules. We show that only an anticooperative ethidium binding that allows for a disfavored but nonetheless possible intercalation into nearest-neighbor sites can consistently describe the mechanical behavior of intercalator-bound DNA. At high ethidium concentrations and elevated mechanical stress, this causes an almost complete occupation of nearest-neighbor sites and almost a doubling of the DNA contour length. We furthermore show that intercalation into nearest-neighbor sites needs to be considered when estimating intercalator parameters from zero-stress elongation and twisting data. We think that the proposed anticooperative binding mechanism may also be applicable to other intercalating molecules.  相似文献   

14.
The aim of this study was to compare the efficiency of DNA extraction from water as well as from blood samples spiked with A. fumigatus spores, using selected commercial kits. Extraction of DNA according to manufacturer's protocols was preceded by blood cells lysis and disruption of fungal cells by enzymatic digestion or bead beating. The efficiency of DNA extraction was measured by PCR using Aspergillus-specific primers and SYBR Green I dye or TaqMan probes targeting 28S rRNA gene. All methods allowed the detection of Aspergillus at the lowest tested density of water suspensions of spores (101 cells/ml). The highest DNA yield was obtained using the ZR Fungal/Bacterial DNA kit, YeastStar Genomic DNA kit, and QIAamp DNA Mini kit with mechanical cell disruption. The ZR Fungal/Bacterial DNA and YeastStar kits showed the highest sensitivity in examination of blood samples spiked with Aspergillus (100 % for the detection of 102 spores and 75 % for 101 spores). Recently, the enzymatic method ceased to be recommended for examination of blood samples for Aspergillus, thus ZR Fungal/Bacterial DNA kit and QIAamp DNA Mini kit with mechanical cell disruption could be used for extraction of Aspergillus DNA from clinical samples.  相似文献   

15.
Replicative DNA polymerases present an intrinsic proofreading activity during which the DNA primer chain is transferred between the polymerization and exonuclease sites of the protein. The dynamics of this primer transfer reaction during active polymerization remain poorly understood. Here we describe a single‐molecule mechanical method to investigate the conformational dynamics of the intramolecular DNA primer transfer during the processive replicative activity of the Φ29 DNA polymerase and two of its mutants. We find that mechanical tension applied to a single polymerase–DNA complex promotes the intramolecular transfer of the primer in a similar way to the incorporation of a mismatched nucleotide. The primer transfer is achieved through two novel intermediates, one a tension‐sensitive and functional polymerization conformation and a second non‐active state that may work as a fidelity check point for the proofreading reaction.  相似文献   

16.
Proteins adhere to DNA at locations and with strengths that depend on the protein conformation, the underlying DNA sequence and the ionic content of the solution. A facile technique to probe the positions and strengths of protein-DNA binding would aid in understanding these important interactions. Here, we describe a ‘DNA pulley’ for position-resolved nano-mechanical measurements of protein-DNA interactions. A molecule of λ DNA is tethered by one end to a glass surface, and by the other end to a magnetic bead. The DNA is stretched horizontally by a magnet, and a nanoscale knife made of silicon nitride is manipulated to contact, bend and scan along the DNA. The mechanical profile of the DNA at the contact with the knife is probed via nanometer-precision optical tracking of the magnetic bead. This system enables detection of protein bumps on the DNA and localization of their binding sites. We study theoretically the technical requirements to detect mechanical heterogeneities in the DNA itself.  相似文献   

17.
The tumor suppressor p53 plays a crucial role in the cell cycle checkpoints, DNA repair, and apoptosis. p53 consists of a natively unfolded N-terminal region (NTR), central DNA binding domain (DBD), C-terminal tetramerization domain, and regulatory region. In this paper, the interactions between the DBD and the NTR, and between the DBD and DNA were investigated by measuring changes in the mechanical unfolding trajectory of the DBD using atomic force microscopy (AFM)-based single molecule force spectroscopy. In the absence of DNA, the DBD (94–293, 200 amino acids (AA)) showed two different mechanical unfolding patterns. One indicated the existence of an unfolding intermediate consisting of approximately 60 AA, and the other showed a 100 AA intermediate. The DBD with the NTR did not show such unfolding patterns, but heterogeneous unfolding force peaks were observed. Of the heterogeneous patterns, we observed a high frequency of force peaks indicating the unfolding of a domain consisting of 220 AA, which is apparently larger than that of a sole DBD. This observation implies that a part of NTR binds to the DBD, and the mechanical unfolding happens not solely on the DBD but also accompanying a part of NTR. When DNA is bound, the mechanical unfolding trajectory of p53NTR+DBD showed a different pattern from that without DNA. The pattern was similar to that of the DBD alone, but two consecutive unfolding force peaks corresponding to 60 and 100 AA sub-domains were observed. These results indicate that interactions with the NTR or DNA alter the mechanical stability of DBD and result in drastic changes in the mechanical unfolding trajectory of the DBD.  相似文献   

18.
We have previously observed a stimulatory effect of fluid shear stress on the regeneration of cultured endothelial cell layers after mechanical denudation. In this study we examined how fluid shear stress affects endothelial cell DNA synthesis during regeneration. Following mechanical denudation of narrow linear areas, monolayers of bovine aortic endothelial cells cultured on plastic dishes were subjected to shear stress of 1.3-4.1 dynes/cm2 for 24-48 hours in a specially designed apparatus. After the application of shear stress, cells were stained with propidium iodide, and its fluorescence intensity, reflecting cellular DNA content, was measured using photometric fluorescence microscopy. The DNA content of cells exposed to shear stress increased significantly more than that of paired, static control cells (p less than 0.005 to p less than 0.001). The DNA histogram showed that cells exposed to shear stress contained a relatively high proportion of cells located in the S, G2, and M phases of the cell cycle as compared with the static control. These data suggest that fluid shear stress enhances endothelial cell DNA synthesis during the repair of mechanical denudation.  相似文献   

19.
Single-molecule techniques facilitate analysis of mechanical transitions within nucleic acids and proteins. Here, we describe an integrated fluorescence and magnetic tweezers instrument that permits detection of nanometer-scale DNA structural rearrangements together with the application of a wide range of stretching forces to individual DNA molecules. We have analyzed the force-dependent equilibrium and rate constants for telomere DNA G-quadruplex (GQ) folding and unfolding, and have determined the location of the transition state barrier along the well-defined DNA-stretching reaction coordinate. Our results reveal the mechanical unfolding pathway of the telomere DNA GQ is characterized by a short distance (<1 nm) to the transition state for the unfolding reaction. This mechanical unfolding response reflects a critical contribution of long-range interactions to the global stability of the GQ fold, and suggests that telomere-associated proteins need only disrupt a few base pairs to destabilize GQ structures. Comparison of the GQ unfolded state with a single-stranded polyT DNA revealed the unfolded GQ exhibits a compacted non-native conformation reminiscent of the protein molten globule. We expect the capacity to interrogate macromolecular structural transitions with high spatial resolution under conditions of low forces will have broad application in analyses of nucleic acid and protein folding.  相似文献   

20.
E. coli DNA gyrase uses the energy of ATP hydrolysis to introduce essential negative supercoils into the genome, thereby working against the mechanical stresses that accumulate in supercoiled DNA. Using a magnetic-tweezers assay, we demonstrate that small changes in force and torque can switch gyrase among three distinct modes of activity. Under low mechanical stress, gyrase introduces negative supercoils by a mechanism that depends on DNA wrapping. Elevated tension or positive torque suppresses DNA wrapping, revealing a second mode of activity that resembles the activity of topoisomerase IV. This 'distal T-segment capture' mode results in active relaxation of left-handed braids and positive supercoils. A third mode is responsible for the ATP-independent relaxation of negative supercoils. We present a branched kinetic model that quantitatively accounts for all of our single-molecule results and agrees with existing biochemical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号