首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.

Introduction

Interleukin-1 (IL-1) blockade is the treatment of choice of cryopyrin associated periodic syndromes (CAPS). Anti-IL-1 monoclonal antibody (canakinumab) was recently registered. However no clear data are available on the optimal schedule of administration of this drug. The aim of the present study was to analyse the impact of canakinumab on CAPS patients in daily clinical practice and to identify the best schedule of administration according to age and phenotype.

Methods

13 CAPS patients (10 children and 3 young adults) treated with canakinumab were followed for 12 months. Clinical and laboratory parameters were collected at each visit. Health-related quality of life (HRQoL) was recorded at month 12. Complete response was defined as absence of clinical manifestations and normal examinations. Clinical and laboratory variables at last follow-up were compared with those registered at the moment of anakinra discontinuation.

Results

seven patients with chronic infantile neurological cutaneous articular (CINCA) syndrome, four patients with Muckle-Wells syndrome (MWS) and two patients with an overlapping MWS/CINCA phenotype were analysed. CINCA patients experienced a higher number of modifications of the treatment (increased dosage or decreased dosing interval) in respect to MWS patients. At the end of the follow-up CINCA patients displayed a higher frequency of administration with a median dose of 3.7 mg/kg (2.1 mg/kg for MWS patients). Canakinumab was withdrawn in a patient with CINCA for incomplete response and poor compliance. The effect of canakinumab on HRQoL was similar to that observed during treatment with anakinra, with the exception of an improvement of the psychosocial concepts after the introduction of canakinumab.

Conclusions

The use of canakinumab in daily practice is associated with persistent satisfactory control of disease activity but needs progressive dose adjustments in more severe patients. The clinical phenotype, rather than the age, represents the main variable able to determine the need of more frequent administrations of the drug at higher dosage.  相似文献   

2.
3.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

4.

Introduction

Gout is a common arthritis that occurs particularly in patients who frequently have associated comorbidities that limit the use of conventional therapies. The main mechanism of crystal-induced inflammation is interleukin-1 production by activation of the inflammasome. We aimed to evaluate the efficacy and tolerance of anakinra in gouty patients.

Methods

We conducted a multicenter retrospective review of patients receiving anakinra for gouty arthritis. We reviewed the response to treatment, adverse events and relapses.

Results

We examined data for 40 gouty patients (32 men; mean age 60.0 ± 13.9 years) receiving anakinra. Mean disease duration was 8.7 ± 8.7 years. All patients showed contraindications to and/or failure of at least two conventional therapies. Most (36; 90%) demonstrated good response to anakinra. Median pain on a 100-mm visual analog scale was rapidly decreased (73.5 (70.0 to 80.0) to 25.0 (20.0 to 32.5) mm, P <0.0001), as was median C-reactive protein (CRP) level (130.5 (55.8 to 238.8) to 16.0 (5.0 to 29.5) mg/l, P <0.0001). After a median follow-up of 7.0 (2.0 to 13.0) months, relapse occurred in 13 patients after a median delay of 15.0 (10.0 to 70.0) days. Seven infectious events, mainly with long-term use of anakinra, were noted.

Conclusions

Anakinra may be efficient in gouty arthritis, is relatively well tolerated with short-term use, and could be a relevant option in managing gouty arthritis when conventional therapies are ineffective or contraindicated. Its long-term use could be limited by infectious complications.  相似文献   

5.

Background

Influenza is a common respiratory virus and Staphylococcus aureus frequently causes secondary pneumonia during influenza infection, leading to increased morbidity and mortality. Influenza has been found to attenuate subsequent Type 17 immunity, enhancing susceptibility to secondary bacterial infections. IL-27 is known to inhibit Type 17 immunity, suggesting a potential critical role for IL-27 in viral and bacterial co-infection.

Methods

A murine model of influenza and Staphylococcus aureus infection was used to mimic human viral, bacterial co-infection. C57BL/6 wild-type, IL-27 receptor α knock-out, and IL-10 knock-out mice were infected with Influenza H1N1 (A/PR/8/34) or vehicle for 6 days followed by challenge with Staphylococcus aureus or vehicle for 24 hours. Lung inflammation, bacterial burden, gene expression, and cytokine production were determined.

Results

IL-27 receptor α knock-out mice challenged with influenza A had increased morbidity compared to controls, but no change in viral burden. IL-27 receptor α knock-out mice infected with influenza displayed significantly decreased IL-10 production compared to wild-type. IL-27 receptor α knock-out mice co-infected with influenza and S. aureus had improved bacterial clearance compared to wild-type controls. Importantly, there were significantly increased Type 17 responses and decreased IL-10 production in IL-27 receptor α knock-out mice. Dual infected IL-10−/− mice had significantly less bacterial burden compared to dual infected WT mice.

Conclusions

These data reveal that IL-27 regulates enhanced susceptibility to S. aureus pneumonia following influenza infection, potentially through the induction of IL-10 and suppression of IL-17.  相似文献   

6.
7.

Introduction

Cryopyrin-associated periodic syndrome (CAPS) represents a spectrum of three auto-inflammatory syndromes, familial cold auto-inflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease/chronic infantile neurological cutaneous and articular syndrome (NOMID/CINCA) with etiology linked to mutations in the NLRP3 gene resulting in elevated interleukin-1β (IL-1β) release. CAPS is a rare hereditary auto-inflammatory disease, which may start early in childhood and requires a life-long treatment. Canakinumab, a fully human anti-IL-1β antibody, produces sustained selective inhibition of IL-1β. This study was conducted to assess the efficacy, safety, and pharmacokinetics of canakinumab in the treatment of pediatric CAPS patients.

Methods

Seven pediatric patients (five children and two adolescents) with CAPS were enrolled in a phase II, open-label study of canakinumab in patients with CAPS. Canakinumab was administered at a dose of 2 mg/kg subcutaneously (s.c.) (for patients with body weight ≤ 40 kg) or 150 mg s.c. (for patients with body weight > 40 kg) with re-dosing upon each relapse. The primary efficacy variable was time to relapse following achievement of a complete response (defined as a global assessment of no or minimal disease activity and no or minimal rash and values for serum C-reactive protein (CRP) and/or serum amyloid A (SAA) within the normal range, < 10 mg/L).

Results

All patients achieved a complete response within seven days after the first dose of canakinumab and responses were reinduced on retreatment following relapse. Improvements in symptoms were evident within 24 hours after the first dose, according to physician assessments. The estimated median time to relapse was 49 days (95% CI 29 to 68) in children who received a dose of 2 mg/kg. Canakinumab was well tolerated. One serious adverse event, vertigo, was reported, but resolved during treatment.

Conclusions

Canakinumab, 2 mg/kg or 150 mg s.c., induced rapid and sustained clinical and biochemical responses in pediatric patients with CAPS.

Trial registration number

ClinicalTrials.gov: NCT00487708  相似文献   

8.

Background and Aims

Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics.

Methods

New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated.

Key Results

The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics.

Conclusions

AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other genes to improve the resolution of palm phylogenies.  相似文献   

9.

Background

MALT1 belongs to a family of paracaspase and modulates NF-κB signaling pathways through its scaffolding function and proteolytic activity. MALT1 cleaves protein substrates after a positively charged Arginine residue. BCL10, a 233 amino acids polypeptide, is identified as one of the MALT1 proteolytic substrates. MALT1 cleaves BCL10 at the C-terminal end of Arg228. A mere 5 amino acids difference between the substrate and the proteolytic product made it difficult to tell whether the cleavage event took place by using a simple western blot analysis. Here, BCL10GFP was constructed and utilized to examine the specificity and domain determinants for MALT1 cleavage in cells.

Methods

Various BCL10GFP constructs were transfected into HEK293T cell with MALT1 construct by using calcium phosphate-DNA precipitation method. Lysates of transfectants were resolved by SDS/PAGE and analyzed by western blot analysis.

Results

BCL10GFP was proteolytically processed by MALT1 as BCL10. The integrity of caspase recruitment domain (CARD) and MALT1-interacting domain on BCL10 were required for MALT1 proteolytic activity. Besides the invariant P1 cleavage site Arg228, P4 Leu225 played a role in defining BCL10 as a good substrate for MALT1.

Conclusions

We offered a way of monitoring the catalytic activity of MALT1 in HEK293T cells using BCL10GFP as a substrate. BCL10GFP can be utilized as a convenient tool for studying the determinants for efficient MALT1 cleavage in HEK293T cells  相似文献   

10.
11.

Objectives

Fatigue is a major cause of disability in primary Sjögren''s syndrome (pSS). Fatigue has similarities with sickness behaviour in animals; the latter mediated by pro-inflammatory cytokines, in particular interleukin (IL)-1, acting on neuronal brain cells. We hypothesised that IL-1 inhibition might improve fatigue in pSS patients; thus, we examined the effects and safety of an IL-1 receptor antagonist (anakinra) on fatigue.

Methods

Twenty-six pSS patients participated in a double-blind, placebo-controlled parallel group study. Patients were randomised to receive either anakinra or a placebo for four weeks. Fatigue was evaluated by a fatigue visual analogue scale and the Fatigue Severity Scale. The primary outcome measure was a group-wise comparison of the fatigue scores at week 4, adjusted for baseline values. Secondary outcome measures included evaluation of laboratory results and safety. The proportion of patients in each group who experienced a 50% reduction in fatigue was regarded as a post-hoc outcome. All outcomes were measured at week 4.

Results

There was no significant difference between the groups in fatigue scores at week 4 compared to baseline after treatment with anakinra. However, six out of 12 patients on anakinra versus one out of 13 patients on the placebo reported a 50% reduction in fatigue VAS (p = 0.03). There were two serious adverse events in each group.

Conclusions

This randomised, double-blind, placebo-controlled trial of IL-1 blockade did not find a significant reduction in fatigue in pSS in its primary endpoint. A 50% reduction in fatigue was analysed post-hoc, and significantly more patients on the active drug than on placebo reached this endpoint. Although not supported by the primary endpoint, this may indicate that IL-1 inhibition influences fatigue in patients with pSS.

Trial registration

ClinicalTrials.gov NCT00683345  相似文献   

12.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   

13.

Background and Aims

Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature.

Methods

An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants.

Key Results

Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants.

Conclusions

These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas.  相似文献   

14.

Background

This study aimed to determine the seasonal changes of total antioxidant activity and phenolic compounds in samples taken from leaves (April, July, October) and stems (April, July, October, January) of some almond (Prunus amygdalus L.) varieties (Nonpareil, Ferragnes and Texas).

Results

It was indicated that antioxidant activity and phenolic compounds in leaves and stems of Nonpareil, Ferragnes and Texas showed seasonal differences. Antioxidant activity IC50 of these varieties reached the highest value in April for leaves whereas in October for stems. The highest level of total phenolic compounds was in January for stems while in October for leaves.

Conclusions

These results showed that total antioxidant activity and phenolics in leaves and stems of almond varieties changed according to season and plant organ.  相似文献   

15.

Background

In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation.

Results

By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance.

Conclusions

This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-495) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

In vivo phosphorylation of sphingosine analogs with their ensuing binding and activation of their cell-surface sphingosine-1-phosphate receptors is regarded as the main immunomodulatory mechanism of this new class of drugs. Prophylactic treatment with sphingosine analogs interferes with experimental asthma by impeding the migration of dendritic cells to draining lymph nodes. However, whether these drugs can also alleviate allergic airway inflammation after its onset remains to be determined. Herein, we investigated to which extent and by which mechanisms the sphingosine analog AAL-R interferes with key features of asthma in a murine model during ongoing allergic inflammation induced by Dermatophagoides pteronyssinus.

Methods

BALB/c mice were exposed to either D. pteronyssinus or saline, intranasally, once-daily for 10 consecutive days. Mice were treated intratracheally with either AAL-R, its pre-phosphorylated form AFD-R, or the vehicle before every allergen challenge over the last four days, i.e. after the onset of allergic airway inflammation. On day 11, airway responsiveness to methacholine was measured; inflammatory cells and cytokines were quantified in the airways; and the numbers and/or viability of T cells, B cells and dendritic cells were assessed in the lungs and draining lymph nodes.

Results

AAL-R decreased airway hyperresponsiveness induced by D. pteronyssinus by nearly 70%. This was associated with a strong reduction of IL-5 and IL-13 levels in the airways and with a decreased eosinophilic response. Notably, the lung CD4+ T cells were almost entirely eliminated by AAL-R, which concurred with enhanced apoptosis/necrosis in that cell population. This inhibition occurred in the absence of dendritic cell number modulation in draining lymph nodes. On the other hand, the pre-phosphorylated form AFD-R, which preferentially acts on cell-surface sphingosine-1-phosphate receptors, was relatively impotent at enhancing cell death, which led to a less efficient control of T cell and eosinophil responses in the lungs.

Conclusion

Airway delivery of the non-phosphorylated sphingosine analog, but not its pre-phosphorylated counterpart, is highly efficient at controlling the local T cell response after the onset of allergic airway inflammation. The mechanism appears to involve local induction of lymphocyte apoptosis/necrosis, while mildly affecting dendritic cell and T cell accumulation in draining lymph nodes.  相似文献   

17.

Background

Heart failure (HF) is a complex clinical syndrome characterized by impaired cardiac function and poor exercise tolerance. Enhanced inflammation is associated with worsening outcomes in HF patients and may play a direct role in disease progression. Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that becomes chronically elevated in HF and exerts putative negative inotropic effects.

Methods and Results

We developed a model of IL-1β-induced left ventricular (LV) dysfunction in healthy mice that exhibited a 32% reduction in LV fractional shortening (P<0.001) and a 76% reduction in isoproterenol response (P<0.01) at 4 hours following a single dose of IL-1β 3 mcg/kg. This phenotype was reproducible in mice injected with plasma from HF patients and fully preventable by pretreatment with IL-1 receptor antagonist (anakinra). This led to the design and conduct of a pilot clinical to test the effect of anakinra on cardiopulmonary exercise performance in patients with HF and evidence of elevated inflammatory signaling (n = 7). The median peak oxygen consumption (VO2) improved from 12.3 [10.0, 15.2] to 15.1 [13.7, 19.3] mL·kg–1·min–1 (P = 0.016 vs. baseline) and median ventilator efficiency (VE/VCO2 slope) improved from 28.1 [22.8, 31.7] to 24.9 [22.9, 28.3] (P = 0.031 vs. baseline).

Conclusions

These findings suggest that IL-1β activity contributes to poor exercise tolerance in patients with systolic HF and identifies IL-1β blockade as a novel strategy for pharmacologic intervention.

Trial Registration

ClinicalTrials.gov NCT01300650  相似文献   

18.

Background

The ATP-binding cassette transporter B1 (ABCB1) gene codes for a membrane efflux pump localized in epithelial cells. Together with other Permeability-glycoproteins in the small and large intestine, its product represents a barrier against xenobiotics, bacterial toxins, drugs and other substances introduced with diet, including carcinogens. The aim of this investigation was to verify the possible contribution of ABCB1 single nucleotide polymorphisms (SNPs) to the genetic risk of colorectal cancer (CRC).

Results

DNA obtained from the peripheral blood of 98 CRC patients and 100 healthy controls was genotyped for the three selected SNPs: 1236C > T (rs1128503), 2677G > T/A (rs2032582), and 3435C > T (rs1045642). Molecular data were analyzed to asses allele and haplotype association with CRC.No evidence of an association between ABCB1 alleles and CRC occurrence as a whole was found. However, ABCB1 showed either association with carcinoma of the sigmoid colon, and appeared able to influence the sex ratio among CRC patients. These two effects seemed to act independently based on multivariate analysis. We showed that ABCB1 polymorphisms were able to influence CRC susceptibility related to tumor localization and patient gender.

Conclusions

We suggest that sensitivity to undetermined risk factors could depend on the genetic background of ABCB1 locus, with a mechanism that also depends on patient gender.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0089-8) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India.

Results

We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected.

Conclusion

The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-454) contains supplementary material, which is available to authorized users.  相似文献   

20.
Li J  Koski MH  Ashman TL 《Annals of botany》2012,109(3):545-552

Background and Aims

Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species.

Methods

We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs.

Key Results

Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high.

Conclusions

The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号