首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genome sequencing reveals agronomically important loci in rice using MutMap   总被引:11,自引:0,他引:11  
The majority of agronomic traits are controlled by multiple genes that cause minor phenotypic effects, making the identification of these genes difficult. Here we introduce MutMap, a method based on whole-genome resequencing of pooled DNA from a segregating population of plants that show a useful phenotype. In MutMap, a mutant is crossed directly to the original wild-type line and then selfed, allowing unequivocal segregation in second filial generation (F(2)) progeny of subtle phenotypic differences. This approach is particularly amenable to crop species because it minimizes the number of genetic crosses (n = 1 or 0) and mutant F(2) progeny that are required. We applied MutMap to seven mutants of a Japanese elite rice cultivar and identified the unique genomic positions most probable to harbor mutations causing pale green leaves and semidwarfism, an agronomically relevant trait. These results show that MutMap can accelerate the genetic improvement of rice and other crop plants.  相似文献   

2.
The phylogeny of the genus Picea was investigated by sequencing three loci from the paternally inherited chloroplast genome (trnK, rbcL and trnTLF) and the intron 2 of the maternally transmitted mitochondrial gene nad1 for 35 species. Significant topological differences were found between the trnK tree and the rbcL and trnTLF phylogenetic trees, and between cpDNA and mtDNA phylogenies. None of the phylogenies matched morphological classifications. The mtDNA phylogeny was geographically more structured than cpDNA phylogenies, reflecting the different inheritance of the two cytoplasmic genomes in the Pinaceae and their differential dispersion by seed only and seed and pollen, respectively. Most North American taxa formed a monophyletic group on the mtDNA tree, with topological patterns suggesting geographic speciation by range fragmentation or by dispersal and isolation. Similar patterns were also found among Asian taxa. Such a trend towards geographic speciation is anticipated in other Pinaceae genera with similar life history, autecology and reproductive system. Incongruences between organelle phylogenies suggested the occurrence of mtDNA capture by invading cpDNA. Incongruences between cpDNA partitions further suggested heterologous recombination presumably also linked to ancient reticulate evolution. Whilst cpDNA appears potentially valuable for molecular taxonomy and systematics purposes, these results emphasize the reduced value of cpDNA to infer vertical descent and the speciation history for plants with paternal transmission and high dispersal of their chloroplast genome.  相似文献   

3.
The biomedical utility of induced pluripotent stem cells (iPSCs) will be diminished if most iPSC lines harbor deleterious genetic mutations. Recent microarray studies have shown that human iPSCs carry elevated levels of DNA copy number variation compared with those in embryonic stem cells, suggesting that these and other classes of genomic structural variation (SV), including inversions, smaller duplications and deletions, complex rearrangements, and retroelement transpositions, may frequently arise as a consequence of reprogramming. Here we employ whole-genome paired-end DNA sequencing and sensitive mapping algorithms to identify all classes of SV in three fully pluripotent mouse iPSC lines. Despite the improved scope and resolution of this study, we find few spontaneous mutations per line (one or two) and no evidence for?endogenous retroelement transposition. These results show that genome stability can persist throughout reprogramming, and argue that it is possible to generate iPSCs lacking gene-disrupting mutations using current reprogramming methods.  相似文献   

4.
Ashelby, C.W., Page, T.J., De Grave, S., Hughes, J.M. & Johnson, M.L. (2012) Regional scale speciation reveals multiple invasions of freshwater in Palaemoninae (Decapoda). —Zoologica Scripta, 41, 293–306. The generic level, systematic relationship in Palaemoninae was inferred from analyses based on the mitochondrial 16S rDNA and nuclear Histone (H3) genes, primarily focussed on the genera Palaemon and Palaemonetes, as previous morphological and molecular studies indicated potential paraphyly in some genera. Palaemonetes, Exopalaemon, Coutierella and certain Palaemon recover as a strongly supported monophyletic clade, but with the exception of Palaemon concinnus, Ppandaliformis and Pgracilis. Within this clade, six major clades are identified with geographic relationships appearing stronger than generic relationships. The data strongly suggest that Palaemon, Palaemonetes, Exopalaemon and Coutierella are synonymous and that the morphological characters currently used to define these genera require re‐evaluation. Freshwater species are not closely related to each other, but instead group with geographically close marine species, suggesting multiple invasions of freshwater by physiologically plastic ancestors rather than a single colonisation event with subsequent speciation.  相似文献   

5.
Dynamics of speciation and diversification in a metapopulation   总被引:1,自引:0,他引:1  
We develop a simple framework for modeling speciation and diversification as a continuous process of accumulation of genetic (or morphological) differences accompanied by species and subpopulation extinction and/or range expansion. This framework can be used to approach a number of questions such as species-area distribution, species-range size distribution, the rate of ecological turnover, asymmetries of range division between sister species, waiting time until speciation and extinction, the relationship between the geographic range size and the probability of speciation, the relationships between subpopulation-level parameters and metapopulation-level parameters, and the effects of taxonomic level on these rates, distributions, and parameters. We illustrate some of these applications using numerical simulations. We develop approximations describing the dependence of the number of different taxonomic units, their average range size, and the rate of their turnover on the system size, the rate of fixation of genetic (or morphological) changes in local demes, and the rate of local extinction and colonization.  相似文献   

6.
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation‐by‐distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome‐wide association studies.  相似文献   

7.
New technologies for DNA sequencing, coupled with advanced analytical approaches, are now providing unprecedented speed and precision in decoding human genomes. This combination of technology and analysis, when applied to the study of cancer genomes, is revealing specific and novel information about the fundamental genetic mechanisms that underlie cancer's development and progression. This review outlines the history of the past several years of development in this realm, and discusses the current and future applications that will further elucidate cancer's genomic causes.  相似文献   

8.
Multimodal signals facilitate communication with conspecifics during courtship, but they can also alert eavesdropper predators. Hence, signallers face two pressures: enticing partners to mate and avoiding detection by enemies. Undefended organisms with limited escape abilities are expected to minimize predator recognition over mate attraction by limiting or modifying their signalling. Alternatively, organisms with anti-predator mechanisms such as aposematism (i.e. unprofitability signalled by warning cues) might elaborate mating signals as a consequence of reduced predation. We hypothesize that calls diversified in association with aposematism. To test this, we assembled a large acoustic signal database for a diurnal lineage of aposematic and cryptic/non-defended taxa, the poison frogs. First, we showed that aposematic and non-aposematic species share similar extinction rates, and aposematic lineages diversify more and rarely revert to the non-aposematic phenotype. We then characterized mating calls based on morphological (spectral), behavioural/physiological (temporal) and environmental traits. Of these, only spectral and temporal features were associated with aposematism. We propose that with the evolution of anti-predator defences, reduced predation facilitated the diversification of vocal signals, which then became elaborated or showy via sexual selection.  相似文献   

9.
This study aims to identify selection pressures during the historical process of homoploid hybrid speciation in three Helianthus (sunflower) hybrid species. If selection against intrinsic genetic incompatibilities (fertility selection) or for important morphological/ecological traits (phenotypic selection) were important in hybrid speciation, we would expect this selection to have influenced the parentage of molecular markers or chromosomal segments in the hybrid species' genomes. To infer past selection, we compared the parentage of molecular markers in high-density maps of the three hybrid species with predicted marker parentage from an analysis of fertility selection in artificial hybrids and from the directions of quantitative trait loci effects with respect to the phenotypes of the hybrid species. Multiple logistic regression models were consistent with both fertility and phenotypic selection in all three species. To further investigate traits under selection, we used a permutation test to determine whether marker parentage predicted from groups of functionally related traits differed from neutral expectations. Our results suggest that trait groups associated with ecological divergence were under selection during hybrid speciation. This study presents a new method to test for selection and supports earlier claims that fertility selection and phenotypic selection on ecologically relevant traits have operated simultaneously during sunflower hybrid speciation.  相似文献   

10.
Evolutionary diversification is often initiated by adaptive divergence between populations occupying ecologically distinct environments while still exchanging genes. The genetic foundations of this divergence process are largely unknown and are here explored through genome scans in multiple independent lake-stream population pairs of threespine stickleback. We find that across the pairs, overall genomic divergence is associated with the magnitude of divergence in phenotypes known to be under divergent selection. Along this same axis of increasing diversification, genomic divergence becomes increasingly biased towards the centre of chromosomes as opposed to the peripheries. We explain this pattern by within-chromosome variation in the physical extent of hitchhiking, as recombination is greatly reduced in chromosome centres. Correcting for this effect suggests that a great number of genes distributed widely across the genome are involved in the divergence into lake vs. stream habitats. Analyzing additional allopatric population pairs, however, reveals that strong divergence in some genomic regions has been driven by selection unrelated to lake-stream ecology. Our study highlights a major contribution of large-scale variation in recombination rate to generating heterogeneous genomic divergence and indicates that elucidating the genetic basis of adaptive divergence might be more challenging than currently recognized.  相似文献   

11.
12.
Pseudoperonospora cubensis is a biotrophic oomycete pathogen that causes downy mildew of cucurbits, a devastating foliar disease threatening cucurbit production worldwide. We sequenced P. cubensis genomic DNA using 454 pyrosequencing and obtained random genomic sequences covering approximately 14% of the genome, thus providing the first set of useful genomic sequence information for P. cubensis. Using bioinformatics approaches, we identified 32 putative RXLR effector proteins. Interestingly, we also identified 29 secreted peptides with high similarity to RXLR effectors at the N-terminal translocation domain, yet containing an R-to-Q substitution in the first residue of the translocation motif. Among these, a family of QXLR-containing proteins, designated as PcQNE, was confirmed to have a functional signal peptide and was further characterized as being localized in the plant nucleus. Internalization of secreted PcQNE into plant cells requires the QXLR-EER motif. This family has a large number of near-identical copies within the P. cubensis genome, is under diversifying selection at the C-terminal domain, and is upregulated during infection of plants, all of which are common characteristics of characterized oomycete effectors. Taken together, the data suggest that PcQNE are bona fide effector proteins with a QXLR translocation motif, and QXLR effectors are prevalent in P. cubensis. Furthermore, the massive duplication of PcQNE suggests that they might play pivotal roles in pathogen fitness and pathogenicity.  相似文献   

13.
What are the evolutionary consequences of gene duplication? One answer is speciation, according to a model initially called Reciprocal Silencing and recently expanded and renamed Divergent Resolution. This model shows how the loss of different copies of a duplicated gene in allopatric populations (divergent resolution) can promote speciation by genetically isolating these populations should they become reunited. Genome duplication events produce thousands of duplicated genes. Therefore, lineages with a history of genome duplication might have been especially prone to speciation via divergent resolution.  相似文献   

14.
15.
《Cell》2023,186(5):923-939.e14
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

16.
Speciation problems are reviewed in the context of biogeography of fresh-water algae. Currently accepted species concept in phycology is based on morphological characters, and according to this concept, most freshwater algal species are considered cosmopolitan. This implies whether they have a highly efficient means of dispersal or their morphological characters are very static through a long evolutionary time. Recent studies of reproductive isolation show that some biological species of fresh-water algae are not so static or may not have such a high power of dispersal means, though some are indeed very static in morphological characters. The life cycle of most freshwater algae is composed of a vegetative cycle of growth and reproduction and a sexual cycle of gametic fusion and meiosis in the zygote, which forms a dormant spore-like structure. Since any freshwater habitat is ephemeral in terms of evolutionary time scale, each species has a capacity of forming germlings from a dormant cell in order to recycle its life history. The genome of freshwater algae, therefore, contains various coadapted gene systems, at least two, for the vegetative and for the sexual cycle. Homothallism and heterothallism are two contrasting mating systems that represent two opposing ways of life to harmonize antagonism between the vegetative stage of growth and reproduction and the sexual and dormant stage. Geographic and ecological distribution, polyploidy, and sex determination are discussed in conjunction with sexual and postzygotic isolating mechanisms.  相似文献   

17.
The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade‐offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco‐evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.  相似文献   

18.

Background

Mismatch repair deficient colorectal adenomas are composed of transformed cells that descend from a common founder and progressively accumulate genomic alterations. The proliferation history of these tumors is still largely unknown. Here we present a novel approach to rebuild the proliferation trees that recapitulate the history of individual colorectal adenomas by mapping the progressive acquisition of somatic point mutations during tumor growth.

Results

Using our approach, we called high and low frequency mutations acquired in the X chromosome of four mismatch repair deficient colorectal adenomas deriving from male individuals. We clustered these mutations according to their frequencies and rebuilt the proliferation trees directly from the mutation clusters using a recursive algorithm. The trees of all four lesions were formed of a dominant subclone that co-existed with other genetically heterogeneous subpopulations of cells. However, despite this similar hierarchical organization, the growth dynamics varied among and within tumors, likely depending on a combination of tumor-specific genetic and environmental factors.

Conclusions

Our study provides insights into the biological properties of individual mismatch repair deficient colorectal adenomas that may influence their growth and also the response to therapy. Extended to other solid tumors, our novel approach could inform on the mechanisms of cancer progression and on the best treatment choice.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0437-8) contains supplementary material, which is available to authorized users.  相似文献   

19.
《Genomics》2022,114(1):305-315
Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号