首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lines of mice were obtained by selective breeding for maximum (AIRmax) or minimum (AIRmin) acute inflammation. They present distinct neutrophil influx and show frequency disequilibrium of the solute carrier family 11a member 1 (Slc11a1) alleles. This gene is involved in ion transport at the endosomes within macrophages and neutrophils, interfering in their activation. Homozygous AIRmax and AIRmin sublines for the Slc11a1 gene were produced to examine the interaction of this gene with the acute inflammatory loci. The present work investigated wound-healing traits in AIRmax and AIRmin mice, in F1 and F2 intercrosses, and in Slc11a1 sublines. Two-millimeter ear punches were made in the mice and hole closure was measured during 40 days. AIRmax mice demonstrated significant tissue repair while AIRmin mice did not. Significant differences between the responses of male and female mice were also observed. Wound-healing traits demonstrated a correlation with neutrophil influx in F2 populations. AIRmax SS showed higher ear-wound closure than AIRmax RR mice, suggesting that the Slc11a1 S allele favored ear tissue repair. QTL analysis has detected two inflammatory loci modulating ear wound healing on chromosomes 1 and 14. These results suggest the involvement of the acute inflammation modifier QTL in the wound-healing phenotype.  相似文献   

2.

Background

Raf-1 kinase inhibitor protein (RKIP) plays a critical role in tumor development by regulating cell functions such as invasion, apoptosis and differentiation. Down-regulation of RKIP expression has been implicated in the development and progression of renal cell carcinoma (RCC). Herein, we hypothesized that genetic polymorphisms in RKIP might be associated with susceptibility and progression of RCC.

Methods

A total of 5 tagging single-nucleotide polymorphisms (tSNPs) in RKIP were selected and genotyped by SNapShot method in a case-control study of 859 RCC patients and 1004 controls. The logistic regression was used to evaluate the genetic association with occurrence and progression of RCC. The functionality of the important SNP was preliminary examined by qRT-PCR.

Result

We found that the rs17512051 in the promoter region of RKIP was significantly associated with decreased clear cell RCC (ccRCC) risk (TA/AA vs. TT: P = 0.039, OR = 0.78, 95%CI = 0.62–0.99). Another SNP (rs1051470) in the 3′UTR region of RKIP was marginally associated with increased ccRCC risk (TT vs. CC+CT: OR = 1.45, 95%CI = 1.01–2.09). In the stratified analysis, the protective effect of rs17512051 was more predominant in the subgroups of male, non-smokers, non-drinkers as well as subjects without history of diabetes. Furthermore, we observed higher RKIP mRNA levels in the presence of the rs17512051A allele in normal renal tissues.

Conclusion

Our results suggest that the potentially functional RKIP rs17512051 polymorphism may affect ccRCC susceptibility through altering the endogenous RKIP expression level. Risk effects and the functional impact of this polymorphism need further validation.  相似文献   

3.
4.
5.

Background

Autism and Agenesis of the Corpus Callosum (AgCC) are interrelated behavioral and anatomic phenotypes whose genetic etiologies are incompletely understood. We used the BTBR T+ tf/J (BTBR) strain, exhibiting fully penetrant AgCC, a diminished hippocampal commissure, and abnormal behaviors that may have face validity to autism, to study the genetic basis of these disorders.

Methods

We generated 410 progeny from an F2 intercross between the BTBR and C57BL/6J strains. The progeny were phenotyped for social behaviors (as juveniles and adults) and commisural morphology, and genotyped using 458 markers. Quantitative trait loci (QTL) were identified using genome scans; significant loci were fine-mapped, and the BTBR genome was sequenced and analyzed to identify candidate genes.

Results

Six QTL meeting genome-wide significance for three autism-relevant behaviors in BTBR were identified on chromosomes 1, 3, 9, 10, 12, and X. Four novel QTL for commissural morphology on chromosomes 4, 6, and 12 were also identified. We identified a highly significant QTL (LOD score = 20.2) for callosal morphology on the distal end of chromosome 4.

Conclusions

We identified several QTL and candidate genes for both autism-relevant traits and commissural morphology in the BTBR mouse. Twenty-nine candidate genes were associated with synaptic activity, axon guidance, and neural development. This is consistent with a role for these processes in modulating white matter tract development and aspects of autism-relevant behaviors in the BTBR mouse. Our findings reveal candidate genes in a mouse model that will inform future human and preclinical studies of autism and AgCC.  相似文献   

6.

Background

Mutations in the P53 gene are among the most common genetic abnormalities in human lung cancer. Codon 273 in the sequence-specific DNA binding domain is one of the most frequently mutated sites.

Methodology

To investigate the role of mutant p53 in lung tumorigenesis, a lung specific p53(273H) transgenic mouse model was developed. Rates of lung cancer formation in the transgenic animals and their littermates were evaluated by necropsy studies performed in progressive age cohorts ranging from 4 to 24 months. In order to establish the influence of other common genetic abnormalities in lung tumor formation in the animals, K-Ras gene mutation and p16INK4a (p16) promoter methylation were evaluated in a total of 281 transgenic mice and 189 non-transgenic littermates.

Principal Findings

At the age extremes of 4–12 and 22–24 months no differences were observed, with very low prevalence of tumors in animals younger than 12 months, and a relatively high prevalence at age 22 months or older. However, the transgenic mice had a significant higher lung tumor rate than their non-transgenic counterparts during the age of 13–21 months, suggesting an age-related shift in lung tumor formation induced by the lung-specific expression of the human mutant p53. Histopathology suggested a more aggressive nature for the transgenic tumors. Older mice (>13 months) had a significantly higher rate of p16 promoter methylation (17% v 82%). In addition, an age related effect was observed for K-Ras codons 12 or 13 mutations, but not for codon 61 mutations.

Conclusions/Significance

These results would suggest that the mutant p53(273H) contributes to an acceleration in the development of spontaneous lung tumors in these mice. Combination with other genetic and epigenetic alterations occurring after the age of 13 months is intimately linked to its oncogenic potential.  相似文献   

7.
Frequent alteration of upstream proto-oncogenes and tumor suppressor genes activates mechanistic target of rapamycin (mTOR) and causes cancer. However, the downstream effectors of mTOR remain largely elusive. Here we report that brain-expressed X-linked 2 (BEX2) is a novel downstream effector of mTOR. Elevated BEX2 in Tsc2−/− mouse embryonic fibroblasts, Pten−/− mouse embryonic fibroblasts, Tsc2-deficient rat uterine leiomyoma cells, and brains of neuronal specific Tsc1 knock-out mice were abolished by mTOR inhibitor rapamycin. Furthermore, BEX2 was also increased in the liver of a hepatic specific Pten knock-out mouse and the kidneys of Tsc2 heterozygous deletion mice, and a patient with tuberous sclerosis complex (TSC). mTOR up-regulation of BEX2 was mediated in parallel by both STAT3 and NF-κB. BEX2 was involved in mTOR up-regulation of VEGF production and angiogenesis. Depletion of BEX2 blunted the tumorigenesis of cells with activated mTOR. Therefore, enhanced STAT3/NF-κB-BEX2-VEGF signaling pathway contributes to hyperactive mTOR-induced tumorigenesis. BEX2 may be targeted for the treatment of the cancers with aberrantly activated mTOR signaling pathway.  相似文献   

8.

Background

The loss of von Hippel–Lindau (VHL) protein function leads to highly vascular renal tumors characterized by an aggressive course of disease and refractoriness to chemotherapy and radiotherapy. Loss of VHL in renal tumors also differs from tumors of other organs in that the oncogenic cascade is mediated by an increase in the levels of hypoxia-inducible factor-2α (HIF2α) instead of hypoxia-inducible factor-1α (HIF1α).

Methods and Principal Findings

We used renal carcinoma cell lines that recapitulate the differences between mutant VHL and wild-type VHL genotypes. Utilizing a method relying on extracted peptide intensities as a label-free approach for quantitation by liquid chromatography–mass spectrometry, our proteomics study revealed regulation of key proteins important for cancer cell survival, proliferation and stress-resistance, and implicated differential regulation of signaling networks in VHL-mutant renal cell carcinoma. We also observed upregulation of cellular energy pathway enzymes and the stress-responsive mitochondrial 60-kDa heat shock protein. Finding reliance on glutaminolysis in VHL-mutant renal cell carcinoma was of particular significance, given the generally predominant dependence of tumors on glycolysis. The data have been deposited to the ProteomeXchange with identifier PXD000335.

Conclusions and Significance

Pathway analyses provided corroborative evidence for differential regulation of molecular and cellular functions influencing cancer energetics, metabolism and cell proliferation in renal cell carcinoma with distinct VHL genotype. Collectively, the differentially regulated proteome characterized by this study can potentially guide translational research specifically aimed at effective clinical interventions for advanced VHL-mutant, HIF2α-over-expressing tumors.  相似文献   

9.
10.

Background

Metastatic renal cell carcinoma (RCC) is highly resistant to systemic chemotherapy. Unfortunately, nearly all patients die of the metastatic and chemoresistant RCC. Recent studies have shown the atypical PKCζ is an important regulator of tumorigenesis. However, the correlation between PKCζ expression and the clinical outcome in RCC patients is unclear. We examined the level of PKCζ expression in human RCC.

Methods

PKCζ mRNA and protein expressions were examined by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) respectively in RCC tissues of 144 patients. Cellular cytotoxicity and proliferation were assessed by MTT.

Results

PKCζ expression was significantly higher in normal than in cancerous tissues (P < 0.0001) by real-time PCR and IHC. Similarly, PKCζ expression was down-regulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. Interestingly, an increase of PKCζ expression was associated with the elevated tumor grade (P = 0.04), but no such association was found in TNM stage (P = 0.13). Tumors with higher PKCζ expression were associated with tumor size (P = 0.048). Expression of higher PKCζ found a poor survival in patients with high tumor grade. Down-regulation of PKCζ showed the significant chemoresistance in RCC cell lines. Inactivation of PKCζ expression enhanced cellular resistance to cisplatin and paclitaxel, and proliferation in HK-2 cells by specific PKCζ siRNA and inhibitor.

Conclusions

PKCζ expression was associated with tumorigenesis and chemoresistance in RCC.  相似文献   

11.
12.

Background

Genome-wide association studies (GWAS) have identified three loci (rs17401966 in KIF1B, rs7574865 in STAT4, rs9275319 in HLA-DQ) as being associated with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) in a Chinese population, two loci (rs2596542 in MICA, rs9275572 located between HLA-DQA and HLA-DQB) with hepatitis C virus-related HCC (HCV-related HCC) in a Japanese population. In the present study, we sought to determine whether these SNPs are predictive for HBV-related HCC development in other Chinese population as well.

Method and Findings

We genotyped 4 SNPs, rs2596542, rs9275572, rs17401966, rs7574865, in 506 HBV-related HCC patients and 772 chronic hepatitis B (CHB) patients in Han Chinese by TaqMan methods. Odds ratio(OR)and 95% confidence interval (CI) were calculated by logistic regression. In our case-control study, significant association between rs9275572 and HCC were observed (P = 0.02, OR = 0.73, 95% CI = 0.56–0.95). In the further haplotype analysis between rs2596542 at 6p21.33 and rs9275572 at 6p21.3, G-A showed a protective effect on HBV-related HCC occurrence (P<0.001, OR = 0.66, 95% CI = 0.52–0.84).

Conclusion

These findings provided convincing evidence that rs9275572 significantly associated with HBV-related HCC.  相似文献   

13.

Background

Kashin-Beck disease is a kind of degenerative osteoarthropathy. Genetic factors may play an important role in the pathogenesis of KBD.

Objective

To investigate the association of the selenoprotein genes GPX1 (rs1050450, rs1800668, and rs3811699), TrxR2 (rs5748469), and DIO2 (rs225014) with Kashin-Beck disease (KBD) in a Tibetan population and to investigate the association of these SNPs with the serum iodine/selenium concentration in the Tibetan population.

Design

Five SNPs including rs1050450, rs1800668, and rs3811699 in the GPX1 gene, rs5748469 in the TrxR2 gene, and rs225014 in the DIO2 gene were analyzed in Tibetan KBD patients and controls using the SNaPshot method. P trend values of the SNPs were calculated using an additive model.

Results

None of the five SNPs in the three genes showed a significant association with KBD. Haplotypes TCC, TTC and TTT of rs1050450, rs1800668 and rs3811699 in GPX1 showed a significant association with KBD and controls with P value of 0.0421, 5.0E-4 and 0.0066, respectively. The GPX1 gene (rs1050450) showed a potential significant association with the iodine concentration in the Tibetan study population (P = 0.02726). However, no such association was detected with the selenium concentration (P = 0.2849).

Conclusion(s)

In this study, we showed that single SNPs in the genes GPX1 (rs1050450, rs1800668 and rs3811699), TrxR2 (rs5748469), and DIO2 (rs225014) may not be significantly associated with KBD in a Tibetan population. However, haplotype analysis of SNPs rs1050450, rs1800668 and rs3811699 in GPX1 gene showed a significant association with KBD. The results suggested that GPX1 gene play a protective role in the susceptivity of KBD in Tibetans. Furthermore, the GPX1 gene (rs1050450) may be significantly associated with the serum iodine concentration in Tibetans.  相似文献   

14.
15.

Background

Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage caused by BPDE is normally repaired by Nucleotide Excision Repair (NER), of which ERCC1 and ERCC2/XPD exert an indispensable role. Genetic variations in ERCC1 and ERCC2 have been related to DNA repair efficiency. In this study we used lymphocytes from healthy individuals to show that polymorphisms in ERCC1 and ERCC2 are directly associated with decreased DNA repair efficiency.

Methods

ERCC1 (rs3212986 and rs11615) and ERCC2 (rs13181, rs1799793 and rs238406) were genotyped in 818 healthy Han individuals from the northeast of China. BPDE induced DNA adducts in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 282 randomly selected participants. The effect of ERCC1 rs3212986 and ERCC2 rs238406 on DNA damage caused by B[a]P was assessed with a modified comet assay.

Results

We found that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 were associated with the high levels of BPDE-DNA adducts. Especially ERCC1 rs3212986 A-allele variant was significantly associated with the high BPDE-DNA adducts. Haplotype analysis showed that the ERCC1 haplotype AC (OR = 2.36, 95% CI = 1.84–2.97), ERCC2 haplotype AGA (OR = 1.51, 95% CI = 1.06–2.15) and haplotype block AGAAC (OR = 5.28, 95% CI = 2.95–9.43), AGCAC (OR = 1.35 95% CI = 1.13–1.60) were linked with high BPDE-DNA adducts. In addition, we found that the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 were associated with a reduced DNA repair capacity.

Conclusions

Our results suggest that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 are associated with decreased repair efficiency of BPDE induced DNA damage, and may be predictive for an individual’s DNA repair capacity in response to environmental carcinogens.  相似文献   

16.

Background

MicroRNAs (miRNAs) are a class of small non-coding RNAs to regulate cell differentiation, proliferation, development, and apoptosis. The single nucleotide polymorphism (SNP) rs895819 is located at the terminal loop of pre-miR-27a. Here, we aimed to investigate whether SNP rs895819 was associated with the development of renal cell cancer (RCC) in a Chinese population.

Methods

In this case-control study, we recruited 594 RCC patients and 600 cancer-free controls with frequency matched by age and sex. We genotyped this polymorphism using the TaqMan assay and assessed the effect of this polymorphism on RCC survival. Logistic regression model was used to assess the genetic effects on the development of RCC and interactions between rs895819 polymorphism and risk factors.

Results

Compared with AA homozygote, individuals carrying AG/GG genotypes had a statistically significant reduced susceptibility to RCC (adjusted OR = 0.71, 95% CI = 0.56–0.90). Furthermore, AG/GG genotypes were associated with reduced RCC susceptibility in localized clinical stage (adjusted OR = 0.71, 95% CI = 0.55–0.91), and similar effects were observed in well differentiated and poorly differentiated RCC (adjusted OR = 0.71, 95% CI = 0.55–0.93 for well differentiated, adjusted OR = 0.51, 95% CI = 0.28–0.93 for poorly differentiated). We also observed that rs895819 had multiplicative interactions with age and hypertension. However, the polymorphism did not influence the survival of RCC.

Conclusion

Our results suggest that the pre-miR-27a rs895819 polymorphism can predict RCC risk in a Chinese population. Larger population-based prospective studies should be used to validate our findings.  相似文献   

17.

Background

Interleukin-8 (IL-8) is a potent chemo-attractant cytokine responsible for neutrophil infiltration in lungs with idiopathic pulmonary fibrosis (IPF). The IL-8 protein and mRNA expression are increased in the lung with IPF. We evaluated the effect of single nucleotide polymorphisms (SNPs) of the IL-8 gene on the risk of IPF.

Methods

One promoter (rs4073T>A) and two intronic SNPs (rs2227307T>G and rs2227306C>T) of the IL-8 genes were genotyped in 237 subjects with IPF and 456 normal controls. Logistic regression analysis was applied to evaluate the association of these SNPs with IPF. IL-8 in BAL fluids was measured using a quantitative sandwich enzyme immunoassay, and promoter activity was assessed using the luciferase reporter assay.

Results

The minor allele frequencies of rs4073T>A and rs2227307T>G were significantly lower in the 162 subjects with surgical biopsy-proven IPF and 75 subjects with clinical IPF compared with normal controls in the recessive model (OR = 0.46 and 0.48, p = 0.006 and 0.007, respectively). The IL-8 protein concentration in BAL fluids significantly increased in 24 subjects with IPF compared with 14 controls (p = 0.009). Nine IPF subjects homozygous for the rs4073 T>A common allele exhibited higher levels of the IL-8 protein compared with six subjects homozygous for the minor allele (p = 0.024). The luciferase activity of the rs4073T>A common allele was significantly higher than that of the rs4073T>A minor allele (p = 0.002).

Conclusion

The common allele of a promoter SNP, rs4073T>A, may increase susceptibility to the development of IPF via up-regulation of IL-8.  相似文献   

18.

Background

The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding cassette (ABC) transporters actively transport various xenobiotics across biological membranes.

Objective

To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg.

Methods

The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME) and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry. Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1, ABCB1, ABCC1 and ABCC2 were analysed in both cohorts.

Results

ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish intake was negative for carriers of GT (β = −0.29, 95%CI −0.47, −0.12) and TT (β = −0.49, 95%CI −0.71, −0.26) versus GG, meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (β = −0.12, 95%CI −0.33, 0.09), and TT (β = −0.28, 95%CI −0.51, −0.06) versus CC. For rs2273697, the interaction coefficient was positive when combining GA+AA (β = 0.16, 95%CI 0.01, 0.32) versus GG.

Conclusion

The ABC transporters appear to play a role in accumulation of MeHg during early development.  相似文献   

19.

Background

The mTOR signaling pathway plays a crucial role in the carcinogenesis of renal cell cancer (RCC). We sought to investigate the influence of genetic variations in the mTOR pathway-related genes on the risk of RCC.

Methods

We genotyped 8 potentially functional polymorphisms in AKT1, AKT2, PTEN and MTOR genes using the TaqMan method in a case-control study of 710 RCC patients and 760 cancer-free subjects. Unconditional logistic regression, adjusted for potential confounding factors, was used to assess the risk associations. We then examined the functionality of the important polymorphisms.

Results

Of the 8 polymorphisms, after adjusting for multiple comparisons, we found a significant association between one variant (rs2295080) in the promoter of MTOR and reduced RCC risk (P = 0.005, OR = 0.74, 95%CI = 0.59–0.91, TG/GG vs. TT). Another variant (rs701848) in the 3′UTR region of PTEN was associated with increased RCC risk (P = 0.014, OR = 1.45, 95%CI = 1.08–1.96, CC vs. TT); however, the association was not significant after adjusting for multiple comparisons. Furthermore, we observed lower MTOR mRNA levels in the presence of the rs2295080G allele in normal renal tissues. The luciferase reporter assay showed that the rs2295080G allele significantly decreased luciferase activity. No other significant association between the selected polymorphisms and RCC risk was observed.

Conclusions

Our results suggest that the functional MTOR promoter rs2295080 variant affects RCC susceptibility by modulating the endogenous MTOR expression level. The risk effects and the functional impact of the MTOR rs2295080 variant need further validation.  相似文献   

20.

Objective

Coronary artery disease (CAD) is a multifactorial and polygenic disease. The aim of this study was to examine the association between six polymorphisms of four alcohol metabolism relevant genes (ADH1B, ADH1C, ALDH1b1, ALDH2) and the risk of CAD in Han Chinese.

Methods and Results

This was a hospital-based case-control study involving 1365 hypertensive patients. All study subjects were angiographically confirmed. Genotypes were determined with ligase detection reaction method. There was no observable deviation from the Hardy-Weinberg equilibrium for six examined polymorphisms in controls. The genotype and allele distributions of ALDH1b1 rs2073478 and ALDH2 rs671 polymorphisms differed significantly between the two groups (P≤0.005), even after the Bonferroni correction. The most common allele combination was A-C-C-G-C-G (alleles in order of rs1229984, rs1693482, rs2228093, rs2073478, rs886205, rs671) and its frequency was slightly higher in controls than in CAD patients (P = 0.067). After assigning the most common allele combination as a reference, allele combination A-C-C-T-C-A, which simultaneously possessed the risk alleles of rs2073478 and rs671 polymorphisms, was associated with a 1.80-fold greater risk of CAD. Further, a two-locus model including rs2073478 and rs671 that had a maximal testing accuracy of 0.598 and a cross-validation consistency of 10 (P = 0.008) was deemed as the overall best MDR model, which was further validated by classical Logistic regression model.

Conclusion

Our findings provide clear evidence for both individual and interactive associations of ALDH1b1 and ALDH2 genes with the development of CAD in Han Chinese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号