首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The phosphatidylglycerol deficient ΔpgsA mutant of Synechocystis PCC6803 provided a unique experimental system for investigating in vivo retailoring of exogenously added dioleoylphosphatidylglycerol in phosphatidylglycerol-depleted cells. Gas chromatographic analysis of fatty acid composition suggested that diacyl-phosphatidylglycerols were synthesized from the artificial synthetic precursor. The formation of new, retailored lipid species was confirmed by negative-ion electrospray ionization–Fourier-transform ion cyclotron resonance and ion trap tandem mass spectrometry. Various isomeric diacyl-phosphatidylglycerols were identified indicating transesterification of the exogenously added dioleoylphosphatidyl-glycerol at the sn-1 or sn-2 positions. Polyunsaturated fatty acids were incorporated selectively into the sn-1 position. Our experiments with Synechocystis PCC6803/ΔpgsA mutant cells demonstrated lipid remodeling in a prokaryotic photosynthetic bacterium. Our data suggest that the remodeling of diacylphosphatidylglycerol likely involves reactions catalyzed by phospholipase A1 and A2 or acyl-hydrolase, lysophosphatidylglycerol acyltransferase and acyl-lipid desaturases.  相似文献   

2.
3.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

4.

Key message

With phosphate deficiency, the role of phosphatidylglycerol is compensated by increased glycolipid content in thylakoid membrane biogenesis but not photosynthetic electron transport in Arabidopsis chloroplasts.

Abstract

In plants and cyanobacteria, anionic phosphatidylglycerol (PG) is the only major phospholipid in thylakoid membranes, where neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are predominant. In addition to provide a lipid bilayer matrix, PG plays a specific role in photosynthetic electron transport. Non-phosphorous sulfoquinovosyldiacylglycerol (SQDG) is another anionic lipid in thylakoids; it substitutes for PG under phosphate (Pi) deficiency to maintain proper balance of anionic charge in thylakoid membranes. Although the crucial role of PG in photosynthesis has been deeply analyzed in cyanobacteria, its physiological function in seed plants other than photosynthesis remains unclear. To reveal specific roles of PG and functional overlaps with other thylakoid lipids, we characterized a PG-deficient Arabidopsis mutant (pgp1-2) under Pi-controlled conditions. Under Pi-sufficient conditions, the proportion of PG and other thylakoid lipids was decreased in pgp1-2, which led to severe disruption of thylakoid membrane biogenesis. Under Pi-deficient conditions, the proportion of all glycolipids in the mutant was greatly increased, with that of PG further decreased. In Pi-deficient pgp1-2, thylakoid membranes remarkably developed, which was accompanied by a change in nucleoid morphology and restored expression of nuclear- and plastid-encoded photosynthesis genes. Increase in glycolipid content with Pi deficiency may compensate for the loss of PG in terms of thylakoid membrane biogenesis. Although Pi deficiency increased chlorophyll and photosynthesis protein content in pgp1-2, it critically decreased photochemical activity in PSII. Further deprivation of PG in photosynthesis complexes may abolish the PSII activity in Pi-deficient pgp1-2, which suggests that glycolipids cannot replace PG in photosynthesis.
  相似文献   

5.
Precise structural identification of photosynthetic polar glycerolipids in microalga Tetraselmis chuii has been established using Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS) by direct analysis of the total lipids extract. The mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in both positive and negative modes. The structural determination was based on the characteristic product ions yielded by different glycerolipids under ESI-MS/MS mode, and confirmed the molecular species by the carboxylate anions produced by glycerolipids in the negative mode. As a result, more than 40 lipid molecular species, including 11 monogalactosyldiacylglycerols (MGDG), 7 digalactosyldiacylglycerols (DGDG), 16 sulfoquinovosyldiacylglycerols (SQDG), and 9 phosphatidylglycerols (PG), were detected in Tetraselmis chuii, which had never been identified before in this microalga. Furthermore, some intact lipid molecules with hydroxylated fatty acids that could not be detected by the traditional GC-MS method were found this time, providing novel information for the photosynthetic lipidome of Tetraselmis chuii. Comparative studies on fatty acids at the sn-2 position showed that SQDG and MGDG are dominantly biosynthesized through the prokaryotic pathway, PG is a typically mixed biosynthetic pathway, while DGDG is somewhat peculiar with C14:0 and C16:0 at its sn-2 position. This method could provide a full structural profile of intact photosynthetic lipid molecular species, which may be applied to study the physiological and ecological functions of lipid by monitoring their individual changes.  相似文献   

6.
Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs.  相似文献   

7.
Wada H  Murata N 《Plant physiology》1990,92(4):1062-1069
Changes in glycerolipid and fatty acid composition with a change in growth temperature were studied in the cyanobacterium, Synechocystis PCC6803. Under isothermal growth conditions, temperature did not significantly affect the composition of the various classes of lipids, but a decrease in temperature altered the degree of unsaturation of C18 acids at the sn-1 position, but not that of C16 acids at the sn-2 position of the glycerol moiety in each class of lipids. When the growth temperature was shifted from 38°C to 22°C, the desaturation of C18 acids, but not that of C16 acids, was stimulated. The desaturation of fatty acids occurred only in the light and was inhibited by chloramphenicol, rifampicin and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, but not by cerulenin, an inhibitor for fatty acid synthesis. These findings suggest that desaturase activities are induced after a shift from a higher to a lower temperature, and that the desaturation of fatty acids is connected with the reactions involved in photosynthetic electron transport.  相似文献   

8.
We have assessed that nuclear lipids from rat kidney cells are not only membrane components, but they are also found within the nucleus. The most abundant nuclear and endonuclear lipids have a high proportion of unsaturated fatty acids (n-6 series: arachidonic > linoleic), mainly esterified to PtdCho. Nuclear most abundant molecular species are 16:0–20:4, 16:0–18:2, 18:0–20:4, 18:0–18:2, and 16:0–18:1. Arachidonic acid is esterified at the sn-2 position of PtdCho: 16:0–20:4(25%), 18:0–20:4(15%), 18:2–20:4(3%), 18:1–20:4(2%). Exogenous [1-14C]20:4n-6-CoA is esterified in vitro in GP (glycerophospholipids) > > TAG and DAG. Five PtdCho molecular species were labeled: 16:0–20:4, 18:0–20:4, 18:1–20:4, 18:2–20:4, and 20:4–20:4. In conclusion, these results demonstrated that: (1) there is an important lipid pool within kidney cell nuclei; (2) main nuclear and endonuclear lipid pools were PtdCho molecular species which contained a high proportion of unsaturated fatty acids (20:4n-6 and 18:2n-6) esterified at sn-2 position and 16:0 esterified at sn-1 position; (3) kidney cell nuclei also contained the necessary enzymes to esterify exogenous 20:4n-6-CoA to glycerolipids and to GP; (4) exogenous 20:4n-6-CoA was esterified in five PtdCho molecular species with 20:4n-6 at the sn-2 position, although the most actively synthesized PtdCho contained 20:4n-6 at both the sn-1 and sn-2 positions of the molecule; (5) we can infer that by a remodeling process, the unsaturated fatty acids at the sn-1 position of PtdCho molecular species could be replaced by 16:0 and 18:0, and thus PtdCho would achieve the physiological profile characteristic of the organ.  相似文献   

9.
Glycerolipids of thylakoid membranes isolated from the cyanobacteriumSynechocystis PCC6803 contained high levels of dienoic and trienoicC18 fatty acids, in addition to saturated C16 and monoenoicC18 fatty acids. A mutant (Fadl2) of this cyanobacterium wasdefective in the desaturation of C18 fatty acids at the 12 position,and its thylakoid membranes lacked trienoic acids and containeda very reduced level of dienoic acids. A derivative strain ofFadl2 (Fadl2/desA), which had been transformed with a gene fordesaturation at the 12 position, fully recovered the abilityto desaturate the fatty acids in the glycerolipids of thylakoidmembranes. The thermal properties of the photosynthetic activitiesof the mutant and the transformant were compared with thoseof the wild-type strain. Despite great diversity in the extentof unsaturation of fatty acids between the wild-type, Fadl2,and Fad12/desA strains, no significant differences were foundeither in the temperature dependence of photosynthesis or inthe heat stability of photosynthetic, photosystem II and photosystemI activities. These results demonstrate that the trienoic fattyacids and, probably, the dienoic acids of the lipids in thethylakoid membrane do not affect the thermal properties of theabove-mentioned activities of photosynthesis. 3Permanent address: Institute of Plant Physiology, BiologicalResearch Center of Hungarian Academy of Sciences, H-6701 Szeged,P.O. Box 521, Hungary (Received August 9, 1990; Accepted December 7, 1990)  相似文献   

10.
Synthesis of unsaturated monogalactosyldiacylglycerol (MGDG) was examined in a mutant of Arabidopsis thaliana (L.) Heynh. containing reduced levels of hexadecatrienoic (16:3) and linolenic (18:3) acids in leaf lipids. Molecular species composition and labeling kinetics following the incorporation of exogenous [14C]fatty acids suggest that at least two pathways and multiple substrates are involved in desaturation of linoleic acid (18:2) to 18:3 for production of unsaturated galactolipids. A reduction in 18:3/16:3 MGDG and an increase in 18:2/16:2 MGDG, together with labeling kinetics of these molecular species following the incorporation of exogenous [14C]12:0 fatty acids, suggests that a chloroplastic pathway for production of 18:3 at the sn-1 position of MGDG utilizes 18:2/16:2 MGDG as a substrate. This chloroplastic (prokaryotic) pathway is deficient in the mutant. When exogenous [14C]18:1 was supplied, a eukaryotic (cytoplasmic) pathway involving the desaturation of 18:2 to 18:3 on phosphatidylcholine serves as the source of 18:3 for the sn-2 position of MGDG. This eucaryotic pathway predominates in the mutant.  相似文献   

11.
Analysis of fatty acids from the cyanobacterium Cyanothece sp. PCC 8801 revealed that this species contained high levels of myristic acid (14:0) and linoleic acid in its glycerolipids, with minor contributions from palmitic acid (16:0), stearic acid, and oleic acid. The level of 14:0 relative to total fatty acids reached nearly 50%. This 14:0 fatty acid was esterified primarily to the sn-2 position of the glycerol moiety of glycerolipids. This characteristic is unique because, in most of the cyanobacterial strains, the sn-2 position is esterified exclusively with C16 fatty acids, generally 16:0. Transformation of Synechocystis sp. PCC 6803 with the PCC8801_1274 gene for lysophosphatidic acid acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase) from Cyanothece sp. PCC 8801 increased the level of 14:0 from 2% to 17% in total lipids and the increase in the 14:0 content was observed in all lipid classes. These findings suggest that the high content of 14:0 in Cyanothece sp. PCC 8801 might be a result of the high specificity of this acyltransferase toward the 14:0-acyl-carrier protein.  相似文献   

12.
In vivo oxidation of glycerophospholipid generates a variety of products including truncated oxidized phospholipids (tOx-PLs). The fatty acyl chains at the sn-2 position of tOx-PLs are shorter in length than the parent non-oxidized phospholipids and contain a polar functional group(s) at the end. The effect of oxidatively modified sn-2 fatty acyl chain on the physicochemical properties of tOx-PLs aggregates has not been addressed in detail, although there are few reports that modified fatty acyl chain primarily determines the biological activities of tOx-PLs. In this study we have compared the properties of four closely related tOx-PLs which differ only in the type of modified fatty acyl chain present at the sn-2 position: 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC). Aggregates of individual tOx-PL in aqueous solution were characterized by fluorescence spectroscopy, size exclusion chromatography, native polyacrylamide and agarose gel electrophoresis. The data suggest that aggregates of four closely related tOx-PLs form micelle-like particles of considerably different properties. Our result provides first direct evidence that because of the specific chemical composition of the sn-2 fatty acyl chain aggregates of particular tOx-PL possess a distinctive set of physicochemical properties.  相似文献   

13.
Precise structural identification of photosynthetic polar glycerolipids in microalga Tetraselmis chuii has been established using Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS) by direct analysis of the total lipids extract. The mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in both positive and negative modes. The structural determination was based on the characteristic product ions yielded by different glycerolipids under ESI-MS/MS mode, and confirmed the molecular species by the carboxylate anions produced by glycerolipids in the negative mode. As a result, more than 40 lipid molecular species, including 11 monogalactosyldiacylglycerols (MGDG), 7 digalactosyldiacylglycerols (DGDG), 16 sulfoquinovosyldiacylglycerols (SQDG), and 9 phosphatidylglycerols (PG), were detected in Tetraselmis chuii, which had never been identified before in this microalga. Furthermore, some intact lipid molecules with hydroxylated fatty acids that could not be detected by the traditional GC-MS method were found this time, providing novel information for the photosynthetic lipidome of Tetraselmis chuii. Comparative studies on fatty acids at the sn-2 position showed that SQDG and MGDG are dominantly biosynthesized through the prokaryotic pathway, PG is a typically mixed biosynthetic pathway, while DGDG is somewhat peculiar with C14:0 and C16:0 at its sn-2 position. This method could provide a full structural profile of intact photosynthetic lipid molecular species, which may be applied to study the physiological and ecological functions of lipid by monitoring their individual changes. Supported by the Program for Changjiang Scholars and Innovative Research Team in Universities (PCSIRT) (Grant No. IRT0734), Project of National Ocean Bureau (Grant No. 200805067), Project of Ministry of Science and Technology (Grant No. 2007BAD43B09), and K. C. Wong Magna Fund in Ningbo University  相似文献   

14.
Plasmenyl phospholipids (1-alk-1′-enyl-2-acyl-3-glycerophospholipids, plasmalogens) are a structurally unique class of lipids that contain an α-unsaturated ether substituent at the sn-1 position of the glycerol backbone. Several studies have supported the hypothesis that plasmalogens may be antioxidant molecules that protect cells from oxidative stress. Because the molecular mechanisms responsible for the antioxidant properties of plasmenyl phospholipids are not fully understood, the oxidation of plasmalogens in natural mixtures of phospholipids was studied using electrospray tandem mass spectrometry. Glycerophosphoethanolamine (GPE) lipids from bovine brain were found to contain six major molecular species (16:0p/18:1-, 18:1p/18:1-, 18:0p/20:4-, 16:0p/20:4, 18:0a/20:4-, and 18:0a/22:6-GPE). Oxidation of GPE yielded lyso phospholipid products derived from plasmalogen species containing only monounsaturated sn-2 substituents and diacyl-GPE with oxidized polyunsaturated fatty acyl substituents at sn-2. The only plasmalogen species remaining intact following oxidation contained monounsaturated fatty acyl groups esterified at sn-2. The mechanism responsible for the rapid and specific destruction of plasmalogen GPE may likely involve unique reactivity imparted by a polyunsaturated fatty acyl group esterified at sn-2. This structural feature may play a central role determining the antioxidant properties ascribed to this class of phospholipids.  相似文献   

15.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

16.
An exhaustive qualitative and quantitative profiling of the photosynthetic glycerolipids in three strains of the marine diatom Skeletonema sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. In the diatom thylakoid membrane, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) account for about 45–70% and 5–15% of the total membrane lipids, respectively. The anionic sulfoquinovosyldiacylglycerol (SQDG) as well as the likewise anionic phosphatidylglycerol (PG) contribute between 10–40% and 4–10% each. The predominant species of MGDG were those with C16:3/C16:3, C20:5/16:1, and C20:5/C16:3. Three main molecular species of DGDG contained C20:5/C16:1, C20:5/C16:2, and C16:1/C16:1. The major molecular species of SQDG were those containing combinations of C14:0/C14:0, C14:0/C16:0, C14:0/C16:1, and C14:0/C16:3. All the PG classes contained the C18:1/C18:1 as the main molecular species. Based on the fatty acid species in sn-2 position, it is indicated that MGDG and DGDG are biosynthesized through prokaryotic pathway exclusively within the chloroplast, whereas PG and SQDG have a typical mixed biosynthetic pathway (both prokaryotic pathway and eukaryotic pathways). The chemical characteristics of photosynthetic glycerolipids related with ecological physiology are discussed.  相似文献   

17.
Phosphatidylglycerol and chilling sensitivity in plants   总被引:15,自引:6,他引:9       下载免费PDF全文
The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures.

`Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment.

Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol.

Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus.

  相似文献   

18.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

19.
Phosphatidylglycerol (PG) is the only phospholipid in the thylakoid membranes of chloroplasts of plants, and it is also found in extraplastidial membranes including mitochondria and the endoplasmic reticulum. Previous studies showed that lack of PG in the pgp1‐2 mutant of Arabidopsis deficient in phosphatidylglycerophosphate (PGP) synthase strongly affects thylakoid biogenesis and photosynthetic activity. In the present study, the gene encoding the enzyme for the second step of PG synthesis, PGP phosphatase, was isolated based on sequence similarity to the yeast GEP4 and Chlamydomonas PGPP1 genes. The Arabidopsis AtPGPP1 protein localizes to chloroplasts and harbors PGP phosphatase activity with alkaline pH optimum and divalent cation requirement. Arabidopsis pgpp1‐1 mutant plants contain reduced amounts of chlorophyll, but photosynthetic quantum yield remains unchanged. The absolute content of plastidial PG (34:4; total number of acyl carbons:number of double bonds) is reduced by about 1/3, demonstrating that AtPGPP1 is involved in the synthesis of plastidial PG. PGP 34:3, PGP 34:2 and PGP 34:1 lacking 16:1 accumulate in pgpp1‐1, indicating that the desaturation of 16:0 to 16:1 by the FAD4 desaturase in the chloroplasts only occurs after PGP dephosphorylation.  相似文献   

20.
Phosphatidylglycerol (PG) is considered to play an important role in the ordered assembly and structural maintenance of the photosynthetic apparatus in thylakoid membranes. However, its function in photosynthesis remains poorly understood. In this study we have identified a pgsA gene of Synechocystis sp. PCC6803 that encodes a PG phosphate synthase involved in the biosynthesis of PG. A disruption of the pgsA gene allowed us to manipulate the content of PG in thylakoid membranes and to investigate the function of PG in photosynthesis. The obtained pgsA mutant could grow only in the medium containing PG, and the photosynthetic activity of the pgsA mutant dramatically decreased with a concomitant decrease of PG content in thylakoid membranes when the cells grown in the presence of PG were transferred to the medium without PG. This decrease of photosynthetic activity was attributed to the decrease of photosystem (PS)II activity, but not to the decrease in PSI activity. These findings demonstrate that PG is essential for growth of Synechocystis sp. PCC6803 and provide the first direct evidence that PG plays an important role in PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号