共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states. 相似文献
3.
Non-genomic transgenerational inheritance of disease risk 总被引:3,自引:0,他引:3
Gluckman PD Hanson MA Beedle AS 《BioEssays : news and reviews in molecular, cellular and developmental biology》2007,29(2):145-154
That there is a heritable or familial component of susceptibility to chronic non-communicable diseases such as type 2 diabetes, obesity and cardiovascular disease is well established, but there is increasing evidence that some elements of such heritability are transmitted non-genomically and that the processes whereby environmental influences act during early development to shape disease risk in later life can have effects beyond a single generation. Such heritability may operate through epigenetic mechanisms involving regulation of either imprinted or non-imprinted genes but also through broader mechanisms related to parental physiology or behaviour. We review evidence and potential mechanisms for non-genomic transgenerational inheritance of 'lifestyle' disease and propose that the 'developmental origins of disease' phenomenon is a maladaptive consequence of an ancestral mechanism of developmental plasticity that may have had adaptive value in the evolution of generalist species such as Homo sapiens. 相似文献
4.
5.
《Epigenetics》2013,8(7):838-842
The majority of environmental factors can not modify DNA sequence, but can influence the epigenome. The mitotic stability of the epigenome and ability of environmental epigenetics to influence phenotypic variation and disease, suggests environmental epigenetics will have a critical role in disease etiology and biological areas such as evolutionary biology. The current review presents the molecular basis of how environment can promote stable epigenomes and modified phenotypes, and distinguishes the difference between epigenetic transgenerational inheritance through the germ line versus somatic cell mitotic stability. 相似文献
6.
7.
8.
9.
Skinner MK 《Birth defects research. Part C, Embryo today : reviews》2011,93(1):51-55
The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. 相似文献
10.
11.
While much of our understanding of genetic inheritance is based on the genome of the organism, it is becoming clear that there is an ample amount of epigenetic inheritance, which though reversible, escapes erasing process during gametogenesis and goes on to the next generation. Several examples of transgenerational inheritance of epigenetic features with potential impact on embryonic development and subsequent adult life have come to light. In placental mammals, the placenta is an additional route for epigenetic information flow. This information does not go through any meiotic reprogramming and is, therefore, likely to have a more profound influence on the organism. This also has the implication of providing epigenetic instructions for several months, which is clearly a maternal advantage. Although less well-known, there is also an impact of the embryo in emitting genetic information to the maternal system that remains well beyond the completion of the pregnancy. In this review, we discuss several factors in the context of the evolution of this mammal-specific phenomenon, including genomic imprinting, micromosaicism, and assisted reproduction. We also highlight how this kind of inheritance might require attention in the modern lifestyle within the larger context of the evolutionary process. 相似文献
12.
Tim Lewens 《Bioethics》2020,34(1):7-15
Sperm, eggs and embryos are made up of more than genes, and there are indications that changes to non-genetic structures in these elements of the germline can also be inherited. It is, therefore, a mistake to treat phrases like ‘germline inheritance’ and ‘genetic inheritance’ as simple synonyms, and bioethical discussion should expand its focus beyond alterations to the genome when considering the ethics of germline modification. Moreover, additional research on non-genetic inheritance draws attention to a variety of means whereby differences can be inherited in offspring generations that do not rely on differences in germline structures. Research on these diverse forms of inheritance challenges the notion that there is some special form of ethical concern that falls on germline interventions in general, and on interventions to the nuclear genome within the germline in particular. 相似文献
13.
Transgenerational epigenetic inheritance (TEI), which is the inheritance of expression states and thus traits that are not determined by the DNA sequence, is often postulated but the molecular mechanisms involved are only rarely verified. This especially applies to the heritability of environmentally induced traits, which have gained interest over the last years. Here we will discuss selected examples of epigenetic inheritance in plants and artificially divide them according to the occurrence of inter-generational resetting. The decision which epigenetic marks are reset and which ones are not is crucial for the understanding of TEI. We will consider examples of epialleles found in natural populations and epialleles induced by genetic and/or environmental factors used in experimental setups. 相似文献
14.
15.
It is known that information that is not contained in the DNA sequence - epigenetic information - can be inherited from the parent to the offspring. However, many questions remain unanswered regarding the extent and mechanisms of such inheritance. In this Review, we consider the evidence for transgenerational epigenetic inheritance via the gametes, including cases of environmentally induced epigenetic changes. The molecular basis of this inheritance remains unclear, but recent evidence points towards diffusible factors, in particular RNA, rather than DNA methylation or chromatin. Interestingly, many cases of epigenetic inheritance seem to involve repeat sequences. 相似文献
16.
《遗传学报》2022,49(2):89-95
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance. 相似文献
17.
Adverse exposures in utero have long been linked with an increased susceptibility to adult cardio-renal and metabolic diseases. Clear gender differences exist, whereby growth-restricted females, although exhibiting some phenotypic modifications, are often protected from overt disease outcomes. One of the greatest physiological challenges facing the female gender, however, is that of pregnancy; yet little research has focused on the outcomes associated with this, as a potential 'second-hit' for those who were small at birth. We review the limited evidence suggesting that pregnancy may unmask cardio-renal and metabolic disease states and the consequences for long-term maternal health in females who were born small. Additionally, a growing area of research in this programming field is in the transgenerational transmission of low birth weight and disease susceptibility. Pathways for transmission might include an abnormal adaptation to pregnancy by the growth-restricted mother and/or inheritance via the parental germline. Strategies to optimise the pregnancy environment and/or prevent the consequences of inheritance of programmed deficits and dysfunction are of critical importance for future generations. 相似文献
18.
19.
The mechanisms of transgenerational inheritance and their potential contribution to human phenotypes
As of today, classical genetics has already completed the majority of groundwork to describe the laws of inheritance, identify the causes of many human diseases, and dissect the mechanisms of transfer of genetic information from parents to offspring. However, recent studies indicate that inheritance of phenotypic traits may also occur through nongenetic factors, in particular, through epigenetic factors, that manifest their effects in a transgenerational fashion. This review discusses findings in the area of transgenerational inheritance that open a new era in modern genetics. We discuss the mechanisms of transgenerational inheritance, including DNA methylation, histone modifications, and noncoding RNA transfer, and give an overview of the approaches to detect transgenerational effects in humans. 相似文献
20.
A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution. 相似文献