首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation.

Methodology/Principal Findings

In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis.

Conclusion

These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).  相似文献   

2.

Background

Long-read sequencing technologies were launched a few years ago, and in contrast with short-read sequencing technologies, they offered a promise of solving assembly problems for large and complex genomes. Moreover by providing long-range information, it could also solve haplotype phasing. However, existing long-read technologies still have several limitations that complicate their use for most research laboratories, as well as in large and/or complex genome projects. In 2014, Oxford Nanopore released the MinION® device, a small and low-cost single-molecule nanopore sequencer, which offers the possibility of sequencing long DNA fragments.

Results

The assembly of long reads generated using the Oxford Nanopore MinION® instrument is challenging as existing assemblers were not implemented to deal with long reads exhibiting close to 30% of errors. Here, we presented a hybrid approach developed to take advantage of data generated using MinION® device. We sequenced a well-known bacterium, Acinetobacter baylyi ADP1 and applied our method to obtain a highly contiguous (one single contig) and accurate genome assembly even in repetitive regions, in contrast to an Illumina-only assembly. Our hybrid strategy was able to generate NaS (Nanopore Synthetic-long) reads up to 60 kb that aligned entirely and with no error to the reference genome and that spanned highly conserved repetitive regions. The average accuracy of NaS reads reached 99.99% without losing the initial size of the input MinION® reads.

Conclusions

We described NaS tool, a hybrid approach allowing the sequencing of microbial genomes using the MinION® device. Our method, based ideally on 20x and 50x of NaS and Illumina reads respectively, provides an efficient and cost-effective way of sequencing microbial or small eukaryotic genomes in a very short time even in small facilities. Moreover, we demonstrated that although the Oxford Nanopore technology is a relatively new sequencing technology, currently with a high error rate, it is already useful in the generation of high-quality genome assemblies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1519-z) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats.

Methodology/Principal Findings

Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads.

Conclusions

Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.  相似文献   

4.

Background

Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them.

Methodology/Principal Findings

For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website.

Conclusions/Significance

Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further.  相似文献   

5.

Background

Problems associated with using draft genome assemblies are well documented and have become more pronounced with the use of short read data for de novo genome assembly. We set out to improve the draft genome assembly of the African cichlid fish, Metriaclima zebra, using a set of Pacific Biosciences SMRT sequencing reads corresponding to 16.5× coverage of the genome. Here we characterize the improvements that these long reads allowed us to make to the state-of-the-art draft genome previously assembled from short read data.

Results

Our new assembly closed 68 % of the existing gaps and added 90.6Mbp of new non-gap sequence to the existing draft assembly of M. zebra. Comparison of the new assembly to the sequence of several bacterial artificial chromosome clones confirmed the accuracy of the new assembly. The closure of sequence gaps revealed thousands of new exons, allowing significant improvement in gene models. We corrected one known misassembly, and identified and fixed other likely misassemblies. 63.5 Mbp (70 %) of the new sequence was classified as repetitive and the new sequence allowed for the assembly of many more transposable elements.

Conclusions

Our improvements to the M. zebra draft genome suggest that a reasonable investment in long reads could greatly improve many comparable vertebrate draft genome assemblies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1930-5) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Whole genome sequence construction is becoming increasingly feasible because of advances in next generation sequencing (NGS), including increasing throughput and read length. By simply overlapping paired-end reads, we can obtain longer reads with higher accuracy, which can facilitate the assembly process. However, the influences of different library sizes and assembly methods on paired-end sequencing-based de novo assembly remain poorly understood.

Results

We used 250 bp Illumina Miseq paired-end reads of different library sizes generated from genomic DNA from Escherichia coli DH1 and Streptococcus parasanguinis FW213 to compare the assembly results of different library sizes and assembly approaches. Our data indicate that overlapping paired-end reads can increase read accuracy but sometimes cause insertion or deletions. Regarding genome assembly, merged reads only outcompete original paired-end reads when coverage depth is low, and larger libraries tend to yield better assembly results. These results imply that distance information is the most critical factor during assembly. Our results also indicate that when depth is sufficiently high, assembly from subsets can sometimes produce better results.

Conclusions

In summary, this study provides systematic evaluations of de novo assembly from paired end sequencing data. Among the assembly strategies, we find that overlapping paired-end reads is not always beneficial for bacteria genome assembly and should be avoided or used with caution especially for genomes containing high fraction of repetitive sequences. Because increasing numbers of projects aim at bacteria genome sequencing, our study provides valuable suggestions for the field of genomic sequence construction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1859-8) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture.

Results

The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene.

Conclusion

High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1103) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

While next-generation sequencing technologies have made sequencing genomes faster and more affordable, deciphering the complete genome sequence of an organism remains a significant bioinformatics challenge, especially for large genomes. Low sequence coverage, repetitive elements and short read length make de novo genome assembly difficult, often resulting in sequence and/or fragment “gaps” – uncharacterized nucleotide (N) stretches of unknown or estimated lengths. Some of these gaps can be closed by re-processing latent information in the raw reads. Even though there are several tools for closing gaps, they do not easily scale up to processing billion base pair genomes.

Results

Here we describe Sealer, a tool designed to close gaps within assembly scaffolds by navigating de Bruijn graphs represented by space-efficient Bloom filter data structures. We demonstrate how it scales to successfully close 50.8 % and 13.8 % of gaps in human (3 Gbp) and white spruce (20 Gbp) draft assemblies in under 30 and 27 h, respectively – a feat that is not possible with other leading tools with the breadth of data used in our study.

Conclusion

Sealer is an automated finishing application that uses the succinct Bloom filter representation of a de Bruijn graph to close gaps in draft assemblies, including that of very large genomes. We expect Sealer to have broad utility for finishing genomes across the tree of life, from bacterial genomes to large plant genomes and beyond. Sealer is available for download at https://github.com/bcgsc/abyss/tree/sealer-release.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0663-4) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Third generation sequencing methods, like SMRT (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Next Generation Sequencing (NGS) methods. Hence, they are well suited for de novo- or re-sequencing projects. Sequences generated for these purposes will not only contain reads originating from the nuclear genome, but also a significant amount of reads originating from the organelles of the target organism. These reads are usually discarded but they can also be used for an assembly of organellar replicons. The long read length supports resolution of repetitive regions and repeats within the organelles genome which might be problematic when just using short read data. Additionally, SMRT sequencing is less influenced by GC rich areas and by long stretches of the same base.

Results

We describe a workflow for a de novo assembly of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome sequence only based on data originating from a SMRT sequencing dataset targeted on its nuclear genome. We show that the data obtained from such an experiment are sufficient to create a high quality assembly with a higher reliability than assemblies derived from e.g. Illumina reads only. The chloroplast genome is especially challenging for de novo assembling as it contains two large inverted repeat (IR) regions. We also describe some limitations that still apply even though long reads are used for the assembly.

Conclusions

SMRT sequencing reads extracted from a dataset created for nuclear genome (re)sequencing can be used to obtain a high quality de novo assembly of the chloroplast of the sequenced organism. Even with a relatively small overall coverage for the nuclear genome it is possible to collect more than enough reads to generate a high quality assembly that outperforms short read based assemblies. However, even with long reads it is not always possible to clarify the order of elements of a chloroplast genome sequence reliantly which we could demonstrate with Fosmid End Sequences (FES) generated with Sanger technology. Nevertheless, this limitation also applies to short read sequencing data but is reached in this case at a much earlier stage during finishing.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0726-6) contains supplementary material, which is available to authorized users.  相似文献   

10.
Ma PF  Guo ZH  Li DZ 《PloS one》2012,7(1):e30297

Background

Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change.

Methodology/Principal Findings

We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses.

Conclusions/Significance

Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.  相似文献   

11.

Background

Despite the short length of their reads, micro-read sequencing technologies have shown their usefulness for de novo sequencing. However, especially in eukaryotic genomes, complex repeat patterns are an obstacle to large assemblies.

Principal Findings

We present a novel heuristic algorithm, Pebble, which uses paired-end read information to resolve repeats and scaffold contigs to produce large-scale assemblies. In simulations, we can achieve weighted median scaffold lengths (N50) of above 1 Mbp in Bacteria and above 100 kbp in more complex organisms. Using real datasets we obtained a 96 kbp N50 in Pseudomonas syringae and a unique 147 kbp scaffold of a ferret BAC clone. We also present an efficient algorithm called Rock Band for the resolution of repeats in the case of mixed length assemblies, where different sequencing platforms are combined to obtain a cost-effective assembly.

Conclusions

These algorithms extend the utility of short read only assemblies into large complex genomes. They have been implemented and made available within the open-source Velvet short-read de novo assembler.  相似文献   

12.

Background

With the price of next generation sequencing steadily decreasing, bacterial genome assembly is now accessible to a wide range of researchers. It is therefore necessary to understand the best methods for generating a genome assembly, specifically, which combination of sequencing and bioinformatics strategies result in the most accurate assemblies. Here, we sequence three E. coli strains on the Illumina MiSeq, Life Technologies Ion Torrent PGM, and Pacific Biosciences RS. We then perform genome assemblies on all three datasets alone or in combination to determine the best methods for the assembly of bacterial genomes.

Results

Three E. coli strains – BL21(DE3), Bal225, and DH5α – were sequenced to a depth of 100× on the MiSeq and Ion Torrent machines and to at least 125× on the PacBio RS. Four assembly methods were examined and compared. The previously published BL21(DE3) genome [GenBank:AM946981.2], allowed us to evaluate the accuracy of each of the BL21(DE3) assemblies. BL21(DE3) PacBio-only assemblies resulted in a 90% reduction in contigs versus short read only assemblies, while N50 numbers increased by over 7-fold. Strikingly, the number of SNPs in PacBio-only assemblies were less than half that seen with short read assemblies (~20 SNPs vs. ~50 SNPs) and indels also saw dramatic reductions (~2 indel >5 bp in PacBio-only assemblies vs. ~12 for short-read only assemblies). Assemblies that used a mixture of PacBio and short read data generally fell in between these two extremes. Use of PacBio sequencing reads also allowed us to call covalent base modifications for the three strains. Each of the strains used here had a known covalent base modification genotype, which was confirmed by PacBio sequencing.

Conclusion

Using data generated solely from the Pacific Biosciences RS, we were able to generate the most complete and accurate de novo assemblies of E. coli strains. We found that the addition of other sequencing technology data offered no improvements over use of PacBio data alone. In addition, the sequencing data from the PacBio RS allowed for sensitive and specific calling of covalent base modifications.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-675) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

In conventional approaches to plastid and mitochondrial genome sequencing, the sequencing steps are performed separately; thus, plastid DNA (ptDNA) and mitochondrial DNA (mtDNA) should be prepared independently. However, it is difficult to extract pure ptDNA and mtDNA from plant tissue. Following the development of high-throughput sequencing technology, many researchers have attempted to obtain plastid genomes or mitochondrial genomes using high-throughput sequencing data from total DNA. Unfortunately, the huge datasets generated consume massive computing and storage resources and cost a great deal, and even more importantly, excessive pollution reads affect the accuracy of the assembly. Therefore, it is necessary to develop an effective method that can generate base sequences from plant tissue and that is suitable for all plant species. Here, we describe a highly effective, low-cost method for obtaining plastid and mitochondrial genomes simultaneously.

Results

First, we obtained high-quality DNA employing Partial Concentration Extraction. Second, we evaluated the purity of the DNA sample and determined the sequencing dataset size employing Vector Control Quantitative Analysis. Third, paired-end reads were obtained using a high-throughput sequencing platform. Fourth, we obtained scaffolds employing Two-step Assembly. Finally, we filled in gaps using specific methods and obtained complete plastid and mitochondrial genomes. To ensure the accuracy of plastid and mitochondrial genomes, we validated the assembly using PCR and Sanger sequencing. Using this method,we obtained complete plastid and mitochondrial genomes with lengths of 153,533 nt and 223,412 nt separately.

Conclusion

A simple method for extracting, evaluating, sequencing and assembling plastid and mitochondrial genomes was developed. This method has many advantages: it is timesaving, inexpensive and reproducible and produces high-quality sequence. Furthermore, this method can produce plastid and mitochondrial genomes simultaneously and be used for other plant species. Due to its simplicity and extensive applicability, this method will support research on plant cytoplasmic genomes.  相似文献   

14.

Background

Usually, next generation sequencing (NGS) technology has the property of ultra-high throughput but the read length is remarkably short compared to conventional Sanger sequencing. Paired-end NGS could computationally extend the read length but with a lot of practical inconvenience because of the inherent gaps. Now that Illumina paired-end sequencing has the ability of read both ends from 600 bp or even 800 bp DNA fragments, how to fill in the gaps between paired ends to produce accurate long reads is intriguing but challenging.

Results

We have developed a new technology, referred to as pseudo-Sanger (PS) sequencing. It tries to fill in the gaps between paired ends and could generate near error-free sequences equivalent to the conventional Sanger reads in length but with the high throughput of the Next Generation Sequencing. The major novelty of PS method lies on that the gap filling is based on local assembly of paired-end reads which have overlaps with at either end. Thus, we are able to fill in the gaps in repetitive genomic region correctly. The PS sequencing starts with short reads from NGS platforms, using a series of paired-end libraries of stepwise decreasing insert sizes. A computational method is introduced to transform these special paired-end reads into long and near error-free PS sequences, which correspond in length to those with the largest insert sizes. The PS construction has 3 advantages over untransformed reads: gap filling, error correction and heterozygote tolerance. Among the many applications of the PS construction is de novo genome assembly, which we tested in this study. Assembly of PS reads from a non-isogenic strain of Drosophila melanogaster yields an N50 contig of 190 kb, a 5 fold improvement over the existing de novo assembly methods and a 3 fold advantage over the assembly of long reads from 454 sequencing.

Conclusions

Our method generated near error-free long reads from NGS paired-end sequencing. We demonstrated that de novo assembly could benefit a lot from these Sanger-like reads. Besides, the characteristic of the long reads could be applied to such applications as structural variations detection and metagenomics.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-711) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed.

Results

We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers.

Conclusions

SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-302) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

The relatively short read lengths from next generation sequencing (NGS) technologies still pose a challenge for de novo assembly of complex mammal genomes. One important solution is to use paired-end (PE) sequence information experimentally obtained from long-range DNA fragments (>1 kb). Here, we characterize and extend a long-range PE library construction method based on direct intra-molecule ligation (or molecular linker-free circularization) for NGS.

Results

We found that the method performs stably for PE sequencing of 2- to 5- kb DNA fragments, and can be extended to 10–20 kb (and even in extremes, up to ∼35 kb). We also characterized the impact of low quality input DNA on the method, and develop a whole-genome amplification (WGA) based protocol using limited input DNA (<1 µg). Using this PE dataset, we accurately assembled the YanHuang (YH) genome, the first sequenced Asian genome, into a scaffold N50 size of >2 Mb, which is over100-times greater than the initial size produced with only small insert PE reads(17 kb). In addition, we mapped two 7- to 8- kb insertions in the YH genome using the larger insert sizes of the long-range PE data.

Conclusions

In conclusion, we demonstrate here the effectiveness of this long-range PE sequencing method and its use for the de novo assembly of a large, complex genome using NGS short reads.  相似文献   

17.
Despite the ever-increasing output of next-generation sequencing data along with developing assemblers, dozens to hundreds of gaps still exist in de novo microbial assemblies due to uneven coverage and large genomic repeats. Third-generation single-molecule, real-time (SMRT) sequencing technology avoids amplification artifacts and generates kilobase-long reads with the potential to complete microbial genome assembly. However, due to the low accuracy (~85%) of third-generation sequences, a considerable amount of long reads (>50X) are required for self-correction and for subsequent de novo assembly. Recently-developed hybrid approaches, using next-generation sequencing data and as few as 5X long reads, have been proposed to improve the completeness of microbial assembly. In this study we have evaluated the contemporary hybrid approaches and demonstrated that assembling corrected long reads (by runCA) produced the best assembly compared to long-read scaffolding (e.g., AHA, Cerulean and SSPACE-LongRead) and gap-filling (SPAdes). For generating corrected long reads, we further examined long-read correction tools, such as ECTools, LSC, LoRDEC, PBcR pipeline and proovread. We have demonstrated that three microbial genomes including Escherichia coli K12 MG1655, Meiothermus ruber DSM1279 and Pdeobacter heparinus DSM2366 were successfully hybrid assembled by runCA into near-perfect assemblies using ECTools-corrected long reads. In addition, we developed a tool, Patch, which implements corrected long reads and pre-assembled contigs as inputs, to enhance microbial genome assemblies. With the additional 20X long reads, short reads of S. cerevisiae W303 were hybrid assembled into 115 contigs using the verified strategy, ECTools + runCA. Patch was subsequently applied to upgrade the assembly to a 35-contig draft genome. Our evaluation of the hybrid approaches shows that assembling the ECTools-corrected long reads via runCA generates near complete microbial genomes, suggesting that genome assembly could benefit from re-analyzing the available hybrid datasets that were not assembled in an optimal fashion.  相似文献   

18.

Motivation

Next Generation Sequencing (NGS) is a frequently applied approach to detect sequence variations between highly related genomes. Recent large-scale re-sequencing studies as the Human 1000 Genomes Project utilize NGS data of low coverage to afford sequencing of hundreds of individuals. Here, SNPs and micro-indels can be detected by applying an alignment-consensus approach. However, computational methods capable of discovering other variations such as novel insertions or highly diverged sequence from low coverage NGS data are still lacking.

Results

We present LOCAS, a new NGS assembler particularly designed for low coverage assembly of eukaryotic genomes using a mismatch sensitive overlap-layout-consensus approach. LOCAS assembles homologous regions in a homology-guided manner while it performs de novo assemblies of insertions and highly polymorphic target regions subsequently to an alignment-consensus approach. LOCAS has been evaluated in homology-guided assembly scenarios with low sequence coverage of Arabidopsis thaliana strains sequenced as part of the Arabidopsis 1001 Genomes Project. While assembling the same amount of long insertions as state-of-the-art NGS assemblers, LOCAS showed best results regarding contig size, error rate and runtime.

Conclusion

LOCAS produces excellent results for homology-guided assembly of eukaryotic genomes with short reads and low sequencing depth, and therefore appears to be the assembly tool of choice for the detection of novel sequence variations in this scenario.  相似文献   

19.

Background

Next-generation sequencing technologies are rapidly generating whole-genome datasets for an increasing number of organisms. However, phylogenetic reconstruction of genomic data remains difficult because de novo assembly for non-model genomes and multi-genome alignment are challenging.

Results

To greatly simplify the analysis, we present an Assembly and Alignment-Free (AAF) method (https://sourceforge.net/projects/aaf-phylogeny) that constructs phylogenies directly from unassembled genome sequence data, bypassing both genome assembly and alignment. Using mathematical calculations, models of sequence evolution, and simulated sequencing of published genomes, we address both evolutionary and sampling issues caused by direct reconstruction, including homoplasy, sequencing errors, and incomplete sequencing coverage. From these results, we calculate the statistical properties of the pairwise distances between genomes, allowing us to optimize parameter selection and perform bootstrapping. As a test case with real data, we successfully reconstructed the phylogeny of 12 mammals using raw sequencing reads. We also applied AAF to 21 tropical tree genome datasets with low coverage to demonstrate its effectiveness on non-model organisms.

Conclusion

Our AAF method opens up phylogenomics for species without an appropriate reference genome or high sequence coverage, and rapidly creates a phylogenetic framework for further analysis of genome structure and diversity among non-model organisms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1647-5) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号