首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.  相似文献   

2.
Plants start their life as a single cell, which, during the process of embryogenesis, is transformed into a mature embryo with all organs necessary to support further growth and development. Therefore, each basic cell type is first specified in the early embryo, making this stage of development excellently suited to study mechanisms of coordinated cell specification—pattern formation. In recent years, it has emerged that the plant hormone auxin plays a prominent role in embryo development. Most pattern formation steps in the early Arabidopsis embryo depend on auxin biosynthesis, transport, and response. In this article, we describe those embryo patterning steps that involve auxin activity, and we review recent data that shed light on the molecular mechanisms of auxin action during this phase of plant development.  相似文献   

3.
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.  相似文献   

4.
Phyllotaxis--a new chapter in an old tale about beauty and magic numbers   总被引:2,自引:0,他引:2  
Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is one of the most fascinating patterning phenomena in biology. Numerous theoretical models, that are based on biochemical, biophysical and other principles, have been proposed to explain the development of the patterns. Recently, auxin has been identified as the inducer of organ formation. An emerging model for phyllotaxis states that polar auxin transport in the plant apex generates local peaks in auxin concentration that determine the site of organ formation and thereby the different phyllotactic patterns found in nature. The PIN proteins play a primary role in auxin transport. These proteins are localized in a polar fashion, reflecting the directionality of polar auxin transport. Recent evidence shows that most aspects of phyllotaxis can be explained by the expression pattern and the dynamic subcellular localization of PIN1.  相似文献   

5.
Auxin polar transport is crucial in regulating plant growth and patterning. As auxin efflux carriers, the PIN FORMED (PIN) proteins are responsible for transportation of auxin out of the cell. There are eight and ten PIN members in Arabidopsis (AtPIN) and Medicago truncatula (MtPIN), respectively. Compared with MtPIN10/SMOOTH LEAF MARGIN1 (SLM1), MtPIN4 exhibits a closer relationship with AtPIN1 based phylogenetic analysis. In addition, the gene structure and distribution of transmembrane segments of MtPIN4, MtPIN5 and MtPIN10/SLM1 are similar, implying possible redundant roles among them. However, analysis using Gene Expression Atlas revealed different expression patterns among MtPIN4, MtPIN5 and MtPIN10/SLM1. Loss of function of MtPIN10/SLM1 in M. truncatula resulted in pleiotropic phenotypes in different organs, which are similar with the defects in the pin1 mutant of Arabidopsis, suggesting that the MtPIN10/SLM1 is a putative ortholog of AtPIN1. MtPIN4, MtPIN5 and MtPIN10/SLM1 may have limited redundant functions in the development of M. truncatula. The creation of double and triple mutants will help to elucidate their potential roles in auxin transport and plant development.  相似文献   

6.
Na X  Hu Y  Yue K  Lu H  Jia P  Wang H  Wang X  Bi Y 《Journal of plant physiology》2011,168(11):1149-1156
Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires transport facilitators of the PIN family, largely contributes to the establishment and maintenance of auxin gradients and mediates multiple developmental processes. Here, we report the effects of narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, on postembryonic development of Arabidopsis roots. Arabidopsis seedlings grown on NCS showed defects in root gravitropism which correlates with a reduction in auxin transport in roots. Expressions of auxin transport genes were affected and the polar localization of PIN2 protein was altered under NCS treatment. Taken together, we propose that NCS modulates auxin transport gene expression and PIN2 localization, and thus affects auxin transport and auxin distribution necessary for postembryonic development of Arabidopsis roots.  相似文献   

7.

Background and Aims

The root apical meristem (RAM) is the plant stem cell niche which provides for the formation and continuous development of the root. Auxin is the main regulator of RAM functioning, and auxin maxima coincide with the sites of RAM initiation and maintenance. Auxin gradients are formed due to local auxin biosynthesis and polar auxin transport. The PIN family of auxin transporters plays a critical role in polar auxin transport, and two mechanisms of auxin maximum formation in the RAM based on PIN-mediated auxin transport have been proposed to date: the reverse fountain and the reflected flow mechanisms.

Methods

The two mechanisms are combined here in in silico studies of auxin distribution in intact roots and roots cut into two pieces in the proximal meristem region. In parallel, corresponding experiments were performed in vivo using DR5::GFP Arabidopsis plants.

Key Results

The reverse fountain and the reflected flow mechanism naturally cooperate for RAM patterning and maintenance in intact root. Regeneration of the RAM in decapitated roots is provided by the reflected flow mechanism. In the excised root tips local auxin biosynthesis either alone or in cooperation with the reverse fountain enables RAM maintenance.

Conclusions

The efficiency of a dual-mechanism model in guiding biological experiments on RAM regeneration and maintenance is demonstrated. The model also allows estimation of the concentrations of auxin and PINs in root cells during development and under various treatments. The dual-mechanism model proposed here can be a powerful tool for the study of several different aspects of auxin function in root.  相似文献   

8.
9.
The hormone auxin plays a crucial role in plant morphogenesis. In the shoot apical meristem, the PIN-FORMED1 (PIN1) efflux carrier concentrates auxin into local maxima in the epidermis, which position incipient leaf or floral primordia. From these maxima, PIN1 transports auxin into internal tissues along emergent paths that pattern leaf and stem vasculature. In Arabidopsis thaliana, these functions are attributed to a single PIN1 protein. Using phylogenetic and gene synteny analysis we identified an angiosperm PIN clade sister to PIN1, here termed Sister-of-PIN1 (SoPIN1), which is present in all sampled angiosperms except for Brassicaceae, including Arabidopsis. Additionally, we identified a conserved duplication of PIN1 in the grasses: PIN1a and PIN1b. In Brachypodium distachyon, SoPIN1 is highly expressed in the epidermis and is consistently polarized toward regions of high expression of the DR5 auxin-signaling reporter, which suggests that SoPIN1 functions in the localization of new primordia. In contrast, PIN1a and PIN1b are highly expressed in internal tissues, suggesting a role in vascular patterning. PIN1b is expressed in broad regions spanning the space between new primordia and previously formed vasculature, suggesting a role in connecting new organs to auxin sinks in the older tissues. Within these regions, PIN1a forms narrow canals that likely pattern future veins. Using a computer model, we reproduced the observed spatio-temporal expression and localization patterns of these proteins by assuming that SoPIN1 is polarized up the auxin gradient, and PIN1a and PIN1b are polarized to different degrees with the auxin flux. Our results suggest that examination and modeling of PIN dynamics in plants outside of Brassicaceae will offer insights into auxin-driven patterning obscured by the loss of the SoPIN1 clade in Brassicaceae.  相似文献   

10.
11.

Background

The control of vascular tissue development in plants is influenced by diverse hormonal signals, but their interactions during this process are not well understood. Wild-type sterol profiles are essential for growth, tissue patterning and signalling processes in plant development, and are required for regulated vascular patterning.

Methodology/Principal Findings

Here we investigate the roles of sterols in vascular tissue development, through an analysis of the Arabidopsis mutants hydra1 and fackel/hydra2, which are defective in the enzymes sterol isomerase and sterol C-14 reductase respectively. We show that defective vascular patterning in the shoot is associated with ectopic cell divisions. Expression of the auxin-regulated AtHB8 homeobox gene is disrupted in mutant embryos and seedlings, associated with variably incomplete vascular strand formation and duplication of the longitudinal axis. Misexpression of the auxin reporter proIAA2∶GUS and mislocalization of PIN proteins occurs in the mutants. Introduction of the ethylene-insensitive ein2 mutation partially rescues defective cell division, localization of PIN proteins, and vascular strand development.

Conclusions

The results support a model in which sterols are required for correct auxin and ethylene crosstalk to regulate PIN localization, auxin distribution and AtHB8 expression, necessary for correct vascular development.  相似文献   

12.
13.
Auxin transport - shaping the plant   总被引:21,自引:0,他引:21  
Plant growth is marked by its adaptability to continuous changes in environment. A regulated, differential distribution of auxin underlies many adaptation processes including organogenesis, meristem patterning and tropisms. In executing its multiple roles, auxin displays some characteristics of both a hormone and a morphogen. Studies on auxin transport, as well as tracing the intracellular movement of its molecular components, have suggested a possible scenario to explain how growth plasticity is conferred at the cellular and molecular level. The plant perceives stimuli and changes the subcellular position of auxin-transport components accordingly. These changes modulate auxin fluxes, and the newly established auxin distribution triggers the corresponding developmental response.  相似文献   

14.
15.
Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.  相似文献   

16.
17.
PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.

Ca2+-dependent protein kinase 29 directly phosphorylates the hydrophilic loop of PIN-FORMED proteins to modulate their intracellular trafficking and Arabidopsis development.  相似文献   

18.
The directional flow of the plant hormone auxin mediates multiple developmental processes, including patterning and tropisms. Apical and basal plasma membrane localization of AUXIN-RESISTANT1 (AUX1) and PIN-FORMED1 (PIN1) auxin transport components underpins the directionality of intercellular auxin flow in Arabidopsis thaliana roots. Here, we examined the mechanism of polar trafficking of AUX1. Real-time live cell analysis along with subcellular markers revealed that AUX1 resides at the apical plasma membrane of protophloem cells and at highly dynamic subpopulations of Golgi apparatus and endosomes in all cell types. Plasma membrane and intracellular pools of AUX1 are interconnected by actin-dependent constitutive trafficking, which is not sensitive to the vesicle trafficking inhibitor brefeldin A. AUX1 subcellular dynamics are not influenced by the auxin influx inhibitor NOA but are blocked by the auxin efflux inhibitors TIBA and PBA. Furthermore, auxin transport inhibitors and interference with the sterol composition of membranes disrupt polar AUX1 distribution at the plasma membrane. Compared with PIN1 trafficking, AUX1 dynamics display different sensitivities to trafficking inhibitors and are independent of the endosomal trafficking regulator ARF GEF GNOM. Hence, AUX1 uses a novel trafficking pathway in plants that is distinct from PIN trafficking, providing an additional mechanism for the fine regulation of auxin transport.  相似文献   

19.
Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.  相似文献   

20.
Molecular mechanisms of pattern formation in the plant embryo are not well understood. Recent molecular and cellular studies, in conjunction with earlier microsurgical, physiological, and genetic work, are now starting to define the outlines of a model where gradients of the signaling molecule auxin play a central role in embryo patterning. It is relatively clear how these gradients are established and interpreted, but how they are maintained is still unresolved. Here, we have studied the contributions of auxin biosynthesis, conjugation, and transport pathways to the maintenance of embryonic auxin gradients. Auxin homeostasis in the embryo was manipulated by region-specific conditional expression of indoleacetic acid-tryptophan monooxygenase or indoleacetic acid-lysine synthetase, bacterial enzymes for auxin biosynthesis or conjugation. Neither manipulation of auxin biosynthesis nor of auxin conjugation interfered with auxin gradients and patterning in the embryo. This result suggests a compensatory mechanism for buffering auxin gradients in the embryo. Chemical and genetic inhibition revealed that auxin transport activity, in particular that of the PIN-FORMED1 (PIN1) and PIN4 proteins, is a major factor in the maintenance of these gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号