首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exocyst complex is a multi-subunits evolutionary conserved complex, which was originally shown to be primarily associated with vesicular transport to the plasma membrane. A recent report (Kulich et al., 2013 Traffic; In Press) revealed that AtEXO70B1, one of the multiple subunits of the exocyst complex of Arabidopsis thaliana plants, is co-transported with the autophagy-associated Atg8f protein to the vacuole. This pathway does not involve the Golgi apparatus. The co-localization of AtEXO70B1 and Atg8f suggests either that both of these proteins are co-transported together to the vacuole or, alternatively, that Atg8 binds to a putative Atg8 interacting motif (AIM) located within the AtEXO70B1 polypeptide, apparently forming a tethering complex for an autophagic complex that is transported to the vacuole. In the present addendum, by tooling a bioinformatics approach, we show that AtEXO70B1 as well as the additional 20 paralogs of Arabidopsis EXO70 exocyst subunits each possess one or more AIMs whose consensus sequence implies their high fidelity binding to Atg8. This indicates that the autophagy machinery is strongly involved in the assembly, transport, and apparently also the function of AtEXO70B1 as well as the exocyst sub complex.  相似文献   

2.
The exocyst, an octameric tethering complex and effector of Rho and Rab GTPases, facilitates polarized secretion in yeast and animals. Recent evidence implicates three plant homologs of exocyst subunits (SEC3, SEC8, and EXO70A1) in plant cell morphogenesis. Here, we provide genetic, cell biological, and biochemical evidence that these and other predicted subunits function together in vivo in Arabidopsis thaliana. Double mutants in exocyst subunits (sec5 exo70A1 and sec8 exo70A1) show a synergistic defect in etiolated hypocotyl elongation. Mutants in exocyst subunits SEC5, SEC6, SEC8, and SEC15a show defective pollen germination and pollen tube growth phenotypes. Using antibodies directed against SEC6, SEC8, and EXO70A1, we demonstrate colocalization of these proteins at the apex of growing tobacco pollen tubes. The SEC3, SEC5, SEC6, SEC8, SEC10, SEC15a, and EXO70 subunits copurify in a high molecular mass fraction of 900 kD after chromatographic fractionation of an Arabidopsis cell suspension extract. Blue native electrophoresis confirmed the presence of SEC3, SEC6, SEC8, and EXO70 in high molecular mass complexes. Finally, use of the yeast two-hybrid system revealed interaction of Arabidopsis SEC3a with EXO70A1, SEC10 with SEC15b, and SEC6 with SEC8. We conclude that the exocyst functions as a complex in plant cells, where it plays important roles in morphogenesis.  相似文献   

3.
Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.  相似文献   

4.
Autophagic transport to the vacuole represents an endomembrane trafficking route, which is widely used in plants, not only during stress situations, but also for vacuole biogenesis and during developmental processes. Here we report a role in autophagic membrane transport for EXO70B1—one of 23 paralogs of Arabidopsis EXO70 exocyst subunits. EXO70B1 positive compartments are internalized into the central vacuole and co‐localize with autophagosomal marker ATG8f. This internalization is boosted by induction of autophagy. Loss of function (LOF) mutations in exo70B1 cause reduction of internalized autopagic bodies in the vacuole. Mutant plants also show ectopic hypersensitive response (HR) mediated by salicylic acid (SA) accumulation, increased nitrogen starvation susceptibility and anthocyanin accumulation defects. Anthocyanin accumulation defect persists in npr1x exo70B1 double mutants with SA signaling compromised, while ectopic HR is suppressed. EXO70B1 interacts with SEC5 and EXO84 and forms an exocyst subcomplex involved in autophagy‐related, Golgi‐independent membrane traffic to the vacuole. We show that EXO70B1 is functionally completely different from EXO70A1 exocyst subunit and adopted a specific role in autophagic transport .  相似文献   

5.
The exocyst is a well‐known complex which tethers vesicles at the cell membrane before fusion. Whether an individual subunit can execute a unique function is largely unknown. Using yeast‐two‐hybrid (Y2H) analysis, we found that EXO70A1 interacted with the GOLD domain of Patellin3 (PATL3). The direct EXO70A1‐PATL3 interaction was supported by in vitro and in vivo experiments. In Arabidopsis, PATL3‐GFP colocalized with EXO70A1 predominantly at the cell membrane, and PATL3 localization was insensitive to BFA and TryA23. Remarkably, in the exo70a1 mutant, PATL3 proteins accumulated as punctate structures within the cytosol, which did not colocalize with several endomembrane compartment markers, and was insensitive to BFA. Furthermore, PATL3 localization was not changed in the exo70e2, PRsec6 or exo84b mutants. These data suggested that EXO70A1, but not other exocyst subunits, was responsible for PATL3 localization, which is independent of its role in secretory/recycling vesicle‐tethering/fusion. Both EXO70A1 and PATL3 were shown to bind PI4P and PI(4,5)P2 in vitro. Evidence was obtained that the other four members of the PATL family bound to EXO70A1 as well, and shared a similar localization pattern as PATL3. These findings offered new insights into exocyst subunit‐specific function, and provided data and tools for further characterization of PATL family proteins.  相似文献   

6.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

7.
In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle‐tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss‐of‐function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin–A compartments is delayed after the brefeldin‐A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin‐A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin‐A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA‐a1‐labelled early endosomes or the trans‐Golgi network, but are RAB‐A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.  相似文献   

8.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

9.
Most of the proteins that are specifically turned over by selective autophagy are recognized by the presence of short Atg8 interacting motifs (AIMs) that facilitate their association with the autophagy apparatus. Such AIMs can be identified by bioinformatics methods based on their defined degenerate consensus F/W/Y-X-X-L/I/V sequences in which X represents any amino acid. Achieving reliability and/or fidelity of the prediction of such AIMs on a genome-wide scale represents a major challenge. Here, we present a bioinformatics approach, high fidelity AIM (hfAIM), which uses additional sequence requirements—the presence of acidic amino acids and the absence of positively charged amino acids in certain positions—to reliably identify AIMs in proteins. We demonstrate that the use of the hfAIM method allows for in silico high fidelity prediction of AIMs in AIM-containing proteins (ACPs) on a genome-wide scale in various organisms. Furthermore, by using hfAIM to identify putative AIMs in the Arabidopsis proteome, we illustrate a potential contribution of selective autophagy to various biological processes. More specifically, we identified 9 peroxisomal PEX proteins that contain hfAIM motifs, among which AtPEX1, AtPEX6 and AtPEX10 possess evolutionary-conserved AIMs. Bimolecular fluorescence complementation (BiFC) results verified that AtPEX6 and AtPEX10 indeed interact with Atg8 in planta. In addition, we show that mutations occurring within or nearby hfAIMs in PEX1, PEX6 and PEX10 caused defects in the growth and development of various organisms. Taken together, the above results suggest that the hfAIM tool can be used to effectively perform genome-wide in silico screens of proteins that are potentially regulated by selective autophagy. The hfAIM system is a web tool that can be accessed at link: http://bioinformatics.psb.ugent.be/hfAIM/.  相似文献   

10.
The exocyst is the main plasma membrane vesicle-tethering complex in eukaryotes and is composed of eight different subunits. Yet, in plant genomes, many subunits display multiple copies, thought to reflect evolution of complex subtypes with divergent functions. In Arabidopsis thaliana root endodermal cells, the isoform EXO70A1 is required for positioning of CASP1 at the Casparian Strip Domain, but not for its non-targeted secretion to the plasma membrane. Here, we show that exo84b resembles exo70a1 mutants regarding CASP1 mistargeting and secretion of apoplastic proteins, but exo84b additionally affects secretion of other integral plasma membrane proteins. Moreover, conditional, cell-type-specific gene editing of the single-copy core component SEC6 allows visualization of secretion defects in plant cells with a complete lack of exocyst complex function. Our approach opens avenues for deciphering the complexity/diversity of exocyst functions in plant cells and enables analysis of central trafficking components with lethal phenotypes.

Genetic analysis of exocyst isoforms reveals their distinct roles in cargo secretion.  相似文献   

11.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

12.
Autophagy is an essential process for eliminating ubiquitinated protein aggregates and dysfunctional organelles. Defective autophagy is associated with various degenerative diseases such as Parkinson disease. Through a genetic screening in Drosophila, we identified CG11148, whose product is orthologous to GIGYF1 (GRB10-interacting GYF protein 1) and GIGYF2 in mammals, as a new autophagy regulator; we hereafter refer to this gene as Gyf. Silencing of Gyf completely suppressed the effect of Atg1-Atg13 activation in stimulating autophagic flux and inducing autophagic eye degeneration. Although Gyf silencing did not affect Atg1-induced Atg13 phosphorylation or Atg6-Pi3K59F (class III PtdIns3K)-dependent Fyve puncta formation, it inhibited formation of Atg13 puncta, suggesting that Gyf controls autophagy through regulating subcellular localization of the Atg1-Atg13 complex. Gyf silencing also inhibited Atg1-Atg13-induced formation of Atg9 puncta, which is accumulated upon active membrane trafficking into autophagosomes. Gyf-null mutants also exhibited substantial defects in developmental or starvation-induced accumulation of autophagosomes and autolysosomes in the larval fat body. Furthermore, heads and thoraxes from Gyf-null adults exhibited strongly reduced expression of autophagosome-associated Atg8a-II compared to wild-type (WT) tissues. The decrease in Atg8a-II was directly correlated with an increased accumulation of ubiquitinated proteins and dysfunctional mitochondria in neuron and muscle, which together led to severe locomotor defects and early mortality. These results suggest that Gyf-mediated autophagy regulation is important for maintaining neuromuscular homeostasis and preventing degenerative pathologies of the tissues. Since human mutations in the GIGYF2 locus were reported to be associated with a type of familial Parkinson disease, the homeostatic role of Gyf-family proteins is likely to be evolutionarily conserved.  相似文献   

13.
《Journal of molecular biology》2019,431(15):2821-2834
During autophagy, double-membrane vesicles called autophagosomes capture and degrade the intracellular cargo. The de novo formation of autophagosomes requires several vesicle transport and membrane fusion events which are not completely understood. We studied the involvement of exocyst, an octameric tethering complex, which has a primary function in tethering post-Golgi secretory vesicles to plasma membrane, in autophagy. Our findings indicate that not all subunits of exocyst are involved in selective and general autophagy. We show that in the absence of autophagy specific subunits, autophagy arrest is accompanied by accumulation of incomplete autophagosome-like structures. In these mutants, impaired Atg9 trafficking leads to decreased delivery of membrane to the site of autophagosome biogenesis thereby impeding the elongation and completion of the autophagosomes. The subunits of exocyst, which are dispensable for autophagic function, do not associate with the autophagy specific subcomplex of exocyst.  相似文献   

14.
胞吐是存在于所有真核生物的一种极其重要的细胞活动,直接参与了激素和神经信号的分泌、细胞生长、细胞极性的建立,细胞分裂和细胞壁的形成等多项生理过程。在胞吐过程中,高尔基后转运膜泡与靶膜的识别是由进化上高度保守的胞泌复合体(exocyst)介导的。该复合体由8个蛋白亚基构成,其中EXO70是组成胞泌复合体功能的关键亚基,可与小G蛋白和膜脂互作,参与复合体在靶膜组装。目前,对植物胞泌复合体功能的了解非常有限,已有证据显示其广泛参与了细胞生长,细胞壁形成、细胞分裂等多种生物学过程。与酵母和动物相比,植物胞泌复合体的一个显著特征是:EXO70在高等植物基因组中存在多个同源基因,其具体生物学功能尚不清楚。本文综述胞泌复合体的研究进展,重点讨论植物EXO70的多基因家族,推测不同的EXO70可能参与了组织细胞或运载底物特异的膜泡转运过程。  相似文献   

15.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

16.
Remodelling neuronal connections by synaptic activity requires membrane trafficking. We present evidence for a signalling pathway by which synaptic activity and its consequent Ca2+ influx activate the small GTPase Ral and thereby recruit exocyst proteins to postsynaptic zones. In accord with the ability of the exocyst to direct delivery of post-Golgi vesicles, constitutively active Ral expressed in Drosophila muscle causes the exocyst to be concentrated in the region surrounding synaptic boutons and consequently enlarges the membrane folds of the postsynaptic plasma membrane (the subsynaptic reticulum, SSR). SSR growth requires Ral and the exocyst component Sec5 and Ral-induced enlargement of these membrane folds does not occur in sec5−/− muscles. Chronic changes in synaptic activity influence the plastic growth of this membrane in a manner consistent with activity-dependent activation of Ral. Thus, Ral regulation of the exocyst represents a control point for postsynaptic plasticity. This pathway may also function in mammals as expression of activated RalA in hippocampal neurons increases dendritic spine density in an exocyst-dependent manner and increases Sec5 in spines.  相似文献   

17.
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.  相似文献   

18.
In contrast to a single copy of Exo70 in yeast and mammals, the Arabidopsis genome contains 23 paralogues of Exo70 (AtExo70). Using AtExo70E2 and its GFP fusion as probes, we recently identified a novel double-membrane organelle termed exocyst-positive organelle (EXPO) that mediates an unconventional protein secretion in plant cells. Here we further demonstrate that AtExo70E2 is essential for exocyst subunit recruitment and for EXPO formation in both plants and animals. By performing transient expression in Arabidopsis protoplasts, we established that a number of exocyst subunits (especially the members of the Sec family) are unable to be recruited to EXPO in the absence of AtExo70E2. The paralogue AtExo70A1 is unable to substitute for AtExo70E2 in this regard. Fluorescence resonance energy transfer assay and bimolecular fluorescence complementation analyses confirm the interaction between AtExo70E2 and Sec6 and Sec10. AtExo70E2, but not its yeast counterpart, is also capable of inducing EXPO formation in an animal cell line (HEK293A cells). Electron microscopy confirms the presence of double-membraned, EXPO-like structures in HEK293A cells expressing AtExo70E2. Inversely, neither human nor yeast Exo70 homologues cause the formation of EXPO in Arabidopsis protoplasts. These results point to a specific and crucial role for AtExo70E2 in EXPO formation.  相似文献   

19.
The Atg1 complex, which contains 5 major subunits: Atg1, Atg13, Atg17, Atg29, and Atg31, regulates the induction of autophagy and autophagosome formation. To gain a better understanding of the overall architecture and assembly mechanism of this essential autophagy regulatory complex, we have reconstituted a core assembly of the Saccharomyces cerevisiae Atg1 complex composed of full-length Atg17, Atg29, and Atg31, along with the C-terminal domains of Atg1 (Atg1[CTD]) and Atg13 (Atg13[CTD]). Using chemical-crosslinking coupled with mass spectrometry (CXMS) analysis we systematically mapped the intersubunit interaction interfaces within this complex. Our data revealed that the intrinsically unstructured C-terminal domain of Atg29 interacts directly with Atg17, whereas Atg17 interacts with Atg13 in 2 distinct intrinsically unstructured regions, including a previously unknown motif that encompasses several putative phosphorylation sites. The Atg1[CTD] crosslinks exclusively to the Atg13[CTD] and does not appear to make direct contact with the Atg17-Atg31-Atg29 scaffold. Finally, single-particle electron microscopy analysis revealed that both the Atg13[CTD] and Atg1[CTD] localize to the tip regions of Atg17-Atg31-Atg29 and do not alter the distinct curvature of this scaffolding subcomplex. This work provides a comprehensive understanding of the subunit interactions in the fully assembled Atg1 core complex, and uncovers the potential role of intrinsically disordered regions in regulating complex integrity.  相似文献   

20.
The exocyst is a hetero-oligomeric protein complex involved in exocytosis and has been extensively studied in yeast and animal cells. Evidence is now accumulating that the exocyst is also present in plants. Bioinformatic analysis of genes encoding plant homologs of the exocyst subunit, Exo70, revealed that three Exo70 subgroups are evolutionarily conserved among angiosperms, lycophytes and mosses. Arabidopsis and rice contain 22 and approximately 39 EXO70 genes, respectively, which can be classified into nine clusters considered to be ancient in angiosperms (one has been lost in Arabidopsis). We characterized two independent T-DNA insertional mutants of the AtEXO70A1 gene (exo70A1-1 and exo70A1-2). Heterozygous EXO70A1/exo70A1 plants appear to be normal and segregate in a 1:2:1 ratio, suggesting that neither male nor female gametophytes are affected by the EXO70A1 disruption. However, both exo70A1-1 and exo70A1-2 homozygotes exhibit an array of phenotypic defects. The polar growth of root hairs and stigmatic papillae is disturbed. Organs are generally smaller, plants show a loss of apical dominance and indeterminate growth where instead of floral meristems new lateral inflorescences are initiated in a reiterative manner. Both exo70A1 mutants have dramatically reduced fertility. These results suggest that the putative exocyst subunit EXO70A1 is involved in cell and organ morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号