首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.  相似文献   

2.
《Free radical research》2013,47(12):1405-1418
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. The underlying causes of the disease progression in NAFLD are unclear. Recent evidences suggest endoplasmic reticulum stress in the development of lipid droplets (steatosis) and subsequent generation of reactive oxygen species (ROS) in the progression to non-alcoholic steatohepatitis (NASH). The signalling pathway activated by disruption of endoplasmic reticulum (ER) homoeostasis, called as unfolded protein response, is linked with membrane biosynthesis, insulin action, inflammation and apoptosis. ROS are important mediators of inflammation. Protein folding in ER is linked to ROS. Therefore understanding the basic mechanisms that lead to ER stress and ROS in NAFLD have become the topics of immense interest. The present review focuses on the role of ER stress and ROS in the pathogenesis of NAFLD. We also highlight the cross talk between ER stress and oxidative stress which suggest and encourage the development of therapeutics for NAFLD. Further we have reviewed various strategies used for the management of NAFLD/NASH and limitations of such strategies. Our review therefore highlights the need for newer strategies with regards to ER stress and oxidative stress.  相似文献   

3.
The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.  相似文献   

4.
5.
The progression to nonalcoholic steatohepatitis (NASH) from simple steatosis is associated with the mitochondrial dysfunction, enhanced oxidative stress, and inflammation. Recently, it has been reported that the prevalence of NAFLD (nonalcoholic fatty liver disease)/NASH is increased in patients with adult growth hormone deficiency (AGHD), suggesting that the deficiencies in GH and insulin-like growth factor (IGF-I) are involved in the development of NAFLD/NASH; however, the precise underlying mechanism remains to be elucidated. To clarify the mechanisms and the specific contribution of GH and IGF-I in these conditions, we examined the liver of a GH-deficient rat model, spontaneous dwarf rat (SDR) and the effect of GH and IGF-I administration. SDR showed steatosis and fibrosis in the liver in line with the phenotype observed in AGHD. Serum AST and ALT levels and triglyceride content in the liver were significantly increased in the SDR compared with the control. Intriguingly, the mitochondrial morphology in the SDR hepatocyte was impaired and the area was significantly decreased. Furthermore, oxidative stress in the SDR liver was enhanced. These changes were improved not only by GH but also by IGF-I administration, suggesting that GH-independent IGF-I action plays an essential role in the liver. In conclusion, we demonstrated that GH-deficient rat exhibits NASH and IGF-I plays an essential role to prevent the development of NASH. The improved mitochondrial function and reduced oxidative stress may contribute the effect of IGF-I in the liver.  相似文献   

6.
《Free radical research》2013,47(11):869-880
Abstract

Non-alcoholic fatty liver disease (NAFLD) is now the most common liver disease affecting high proportion of the population worldwide. NAFLD encompasses a large spectrum of conditions ranging from fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and cancer. NAFLD is considered as a multifactorial disease in relation to the pathogenic mechanisms. Oxidative stress has been implicated in the pathogenesis of NAFLD and NASH and the involvement of reactive oxygen species (ROS) has been suggested. Many studies show the association between the levels of lipid oxidation products and disease state. However, often neither oxidative stress nor ROS has been characterized, despite oxidative stress is mediated by multiple active species by different mechanisms and the same lipid oxidation products are produced by different active species. Further, the effects of various antioxidants have been assessed in human and animal studies, but the effects of drugs are determined by the type of active species, suggesting the importance of characterizing the active species involved. This review article is focused on the role of free radicals and free radical-mediated lipid peroxidation in the pathogenesis of NAFLD and NASH, taking characteristic features of free radical-mediated oxidation into consideration. The detailed analysis of lipid oxidation products shows the involvement of free radicals in the pathogenesis of NAFLD and NASH. Potential beneficial effects of antioxidants such as vitamin E are discussed.  相似文献   

7.
8.
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.  相似文献   

9.
Although macrophages are thought to be crucial for the pathogenesis of chronic inflammatory diseases, how they are involved in disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is poorly understood. Here we report the unique histological structure termed “hepatic crown-like structures (hCLS)” in the mouse model of human NASH; melanocortin-4 receptor deficient mice fed a Western diet. In hCLS, CD11c-positive macrophages aggregate to surround hepatocytes with large lipid droplets, which is similar to those described in obese adipose tissue. Histological analysis revealed that hCLS is closely associated with activated fibroblasts and collagen deposition. When treatment with clodronate liposomes effectively depletes macrophages scattered in the liver, with those in hCLS intact, hepatic expression of inflammatory and fibrogenic genes is unaffected, suggesting that hCLS is an important source of inflammation and fibrosis during the progression of NASH. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis. We also observed increased number of hCLS in the liver of non-alcoholic fatty liver disease/NASH patients. Collectively, our data provide evidence that hCLS is involved in the development of hepatic inflammation and fibrosis, thereby suggesting its pathophysiologic role in disease progression from simple steatosis to NASH.  相似文献   

10.
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.  相似文献   

11.
Activation of the innate immune system through toll-like receptors (TLRs) has been repeatedly demonstrated in non-alcoholic fatty liver disease (NAFLD) and several TLRs have been shown to contribute. Myeloid differentiation primary response 88 (MyD88) is as an adapter protein for the activation of TLRs and bridges TLRs to NF-κB-mediated inflammation in macrophages. However, whether myeloid cell MyD88 contributes to NAFLD are largely unknown. To test this approach, we generated macrophage-specific MyD88 knockout mice and show that these mice are protected against high-fat diet (HFD)-induced hepatic injury, lipid accumulation, and fibrosis. These protective effects were associated with reduced macrophage numbers in liver tissues and surpassed inflammatory responses. In cultured macrophages, saturated fatty acid palmitate utilizes MyD88 to activate NF-κB and induce inflammatory and fibrogenic factors. In hepatocytes, these factors may cause lipid accumulation and a further elaboration of inflammatory cytokines. In hepatic stellate cells, macrophage-derived factors, especially TGF-β, cause activation and hepatic fibrosis. We further show that pharmacological inhibition of MyD88 is also able to reduce NAFLD injury in HFD-fed mice. Therefore, our study has provided empirical evidence that macrophage MyD88 participates in HFD-induced NAFLD and could be targeted to prevent the development and progression of NAFLD/NASH.  相似文献   

12.
BackgroundThe transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression.AimTo evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2).MethodsHepG2 cells were treated with fatty acids and subjected to chemically induced hypoxia using the hypoxia-inducible factor 1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Lipid droplets, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic-associated genes were assessed. EVs were isolated by ultracentrifugation. LX-2 cells were treated with EVs from hepatocytes. The CDAA-fed mouse model was used to assess the effects of intermittent hypoxia (IH) in experimental NASH.ResultsChemical hypoxia increased steatosis, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic gene expressions in fat-laden HepG2 cells. Chemical hypoxia also increased the release of EVs from HepG2 cells. Treatment of LX2 cells with EVs from fat-laden HepG2 cells undergoing chemical hypoxia increased expression pro-fibrotic markers. CDAA-fed animals exposed to IH exhibited increased portal inflammation and fibrosis that correlated with an increase in circulating EVs.ConclusionChemical hypoxia promotes hepatocellular damage and pro-inflammatory and pro-fibrotic signaling in steatotic hepatocytes both in vitro and in vivo. EVs from fat-laden hepatocytes undergoing chemical hypoxia evoke pro-fibrotic responses in LX-2 cells.  相似文献   

13.
Oxidative stress is a core abnormality responsible for disease progression in nonalcoholic fatty liver disease (NAFLD). However, the pathways that contribute to oxidative damage in vivo are poorly understood. Our aims were to define the circulating profile of lipid oxidation products in NAFLD patients, the source of these products, and assess whether their circulating levels reflect histological changes in the liver. The levels of multiple structurally specific oxidized fatty acids, including individual hydroxy-eicosatetraenoic acids (HETE), hydroxy-octadecadenoic acids (HODE), and oxo-octadecadenoic acids (oxoODE), were measured by mass spectrometry in plasma at time of liver biopsy in an initial cohort of 73 and a validation cohort of 49 consecutive patients. Of the markers monitored, 9- and 13-HODEs and 9- and 13-oxoODEs, products of free radical-mediated oxidation of linoleic acid (LA), were significantly elevated in patients with nonalcoholic steatohepatitis (NASH), compared with patients with steatosis. A strong correlation was revealed between these oxidation products and liver histopathology (inflammation, fibrosis, and steatosis). Further analyses of HODEs showed equivalent R and S chiral distribution. A risk score for NASH (oxNASH) was developed in the initial clinical cohort and shown to have high diagnostic accuracy for NASH versus steatosis in the independent validation cohort. Subjects with elevated oxNASH levels (top tertile) were 9.7-fold (P < 0.0001) more likely to have NASH than those with low levels (bottom tertile). Collectively, these findings support a key role for free radical-mediated linoleic acid oxidation in human NASH and define a risk score, oxNASH, for noninvasive detection of the presence of NASH.  相似文献   

14.
In patients without substantial alcohol use, triglyceride accumulation in the liver can lead to nonalcoholic fatty liver disease (NAFLD) that may progress to nonalcoholic steatohepatitis (NASH). The differential diagnosis between NAFLD and NASH can be accomplished only by morphological examination. Although the relationship between mitochondrial dysfunction and the progression of liver pathologic changes has been described, the exact mechanisms initiating primary liver steatosis and its progression to NASH are unknown. We selected 16 genes encoding mitochondrial proteins which expression was compared by quantitative RT-PCR in liver tissue samples taken from patients with NAFLD and NASH. We found that 6 of the 16 examined genes were differentially expressed in NAFLD versus NASH patients. The expression of hepatic HK1, UCP2, ME2, and ME3 appeared to be higher in NASH than in NAFLD patients, whereas HMGCS2 and hnRNPK expression was lower in NASH patients. Although the severity of liver morphological injury in the spectrum of NAFLD-NASH may be defined at the molecular level, expression of these selected 6 genes cannot be used as a molecular marker aiding histological examination. Moreover, it is still unclear whether these differences in hepatic gene expression profiles truly reflect the progression of morphological abnormalities or rather indicate various metabolic and hormonal states in patients with different degrees of fatty liver disease.  相似文献   

15.
Non-alcoholic fatty liver disease (NAFLD) is a continuum of disorders that can range from simple steatosis to non-alcoholic steatohepatitis (NASH). As a complex metabolic disorder, the pathophysiology of NAFLD is incompletely understood. Recently glucagon-like peptide (GLP)-1 and -2 signalling has been implicated in the pathogenesis of NAFLD. The role of these gut hormones in the hepatic abnormalities is complicated by lack of consensus on the presence of GLP-1 and GLP-2 receptors within the liver. Nevertheless, GLP-1 and GLP-2 receptor agonists have been associated with alterations in lipid metabolism and hepatic and systemic inflammation, pathological abnormalities characteristic of NAFLD. Treatment with GLP-1 analogues has been shown to reverse features of NAFLD including insulin resistance, and alterations in hepatic de novo lipogenesis and reactive oxygen species. In this review, we provide an overview of the role of GLP-1 and GLP-2 in lipid homeostasis and metabolic disease including NAFLD and NASH.  相似文献   

16.
Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common liver disorders claiming the urgent attention of both medical professionals and the public sphere because of the imminent epidemic of advanced liver injury that appendages epidemic of obesity. Recent research reveals simple triglyceride accumulation in hepatocytes (i.e., liver steatosis) frequently becoming complicated by inflammation (i.e., non-alcoholic steatohepatitis, or NASH) that may progress into more advanced stages of the disease including cirrhosis or, eventually, hepatocellular carcinoma. The exact mechanisms of the progression of NAFLD into overt NASH and advanced disease stages are largely unknown. There is urgent need in terms of both intensive research pursuits and effective practical measures to deal with this common threat.  相似文献   

17.
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia–reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) has emerged as a serious obesity-related disorder. NAFLD encompasses a wide spectrum of hepatic derangements ranging from a surfeit of fat in the liver (steatosis) to lipid surplus accompanied by fibrosis and cellular death (nonalcoholic steatohepatitis or NASH). The most widely accepted model to explain the progression from simple NAFLD to NASH is the "two-hit hypothesis," wherein fat over accumulation per se is not sufficient to induce the progression to statohepatitis, but renders the liver more susceptible to "second hits" that, once imposed upon the steatotic liver, cause further aberrations that culminate in the development of NASH. However, in light of recent data from our laboratory and elsewhere, we propose that an increased ratio of saturated-to-unsaturated fatty acids delivered to or stored within the liver may, in part, mediate the progression from simple steatosis to NASH. The molecular mechanisms that mediate the effect of saturated fatty acids are unclear, although proinflammatory cytokines, reactive oxygen species, and endoplasmic reticulum stress may all play a role. Collectively, these data suggest that saturated fatty acids may represent an intrinsic second hit to the liver that hastens the development of NASH.  相似文献   

19.
Data on the efficacy of herbal compounds are often burdened by the lack of appropriate controls or a limited statistical power. Treatments to prevent the progression of non alcoholic fatty liver disease (NAFLD) to steatohepatitis (NASH) remain unsatisfactory. A total of 56 rabbits were arrayed into 7 groups fed with standard rabbit chow (SRC), SRC with 1% cholesterol, or each of the five experimental treatments (Kampo formulas 1% keishibukuryogan [KBG], 1% orengedokuto [OGT], and 1% shosaikoto [SST]; vitamin E [VE]; or pioglitazone [PG]) in a 1% cholesterol SRC. We analyzed changes after 12 weeks in plasma and liver lipid profiles, glucose metabolism, adipocytokines, oxidative stress, and liver fibrosis. Data demonstrated that all five treatments were associated with significant amelioration of lipid profiles, oxidative stress, and liver fibrosis compared to no supplementation. KBG was superior to VE and PG in the reduction of liver total cholesterol (P < 0.01) and lipid peroxidase levels (P < 0.05), urinary 8-hydroxy-2'-deoxyguanosine (P < 0.05), hepatic alpha-smooth muscle actin positive areas (P < 0.01) and activated stellate cells (P < 0.01). In conclusion, there was a statistically significant benefit of Kampo formulas (KBG in particular) on a dietary model of NAFLD/NASH. Future studies need to be directed at the mechanisms in the treatment of NASH.  相似文献   

20.
Insulin resistance (IR) and obesity are important risk factors for non-alcoholic fatty liver disease (NAFLD). G protein-coupled receptor kinase 2 (GRK2) is involved in the development of IR and obesity in vivo. However, its possible contribution to NAFLD and/or non-alcoholic steatohepatitis (NASH) independently of its role on IR or fat mass accretion has not been explored. Here, we used wild-type (WT) or GRK2 hemizygous (GRK2±) mice fed a high-fat diet (HFD) or a methionine and choline-deficient diet (MCD) as a model of NASH independent of adiposity and IR. GRK2± mice were protected from HFD-induced NAFLD. Moreover, MCD feeding caused an increased in triglyceride content and liver-to-body weight ratio in WT mice, features that were attenuated in GRK2± mice. According to their NAFLD activity score, MCD-fed GRK2± mice were diagnosed with simple steatosis and not overt NASH. They also showed reduced expression of lipogenic and lipid-uptake markers and less signs of inflammation in the liver. GRK2± mice preserved hepatic protective mechanisms as enhanced autophagy and mitochondrial fusion and biogenesis, together with reduced endoplasmic reticulum stress. GRK2 protein was increased in MCD-fed WT but not in GRK2± mice, and enhanced GRK2 expression potentiated palmitic acid-triggered lipid accumulation in human hepatocytes directly relating GRK2 levels to steatosis. GRK2 protein and mRNA levels were increased in human liver biopsies from simple steatosis or NASH patients in two different human cohorts. Our results describe a functional relationship between GRK2 levels and hepatic lipid accumulation and implicate GRK2 in the establishment and/or development of NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号