首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Studies of functional modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in detecting functional modules.

Results

We present a new approach using multi-agent evolution for detection of functional modules in PPI networks. The proposed approach consists of two stages: the solution construction for agents in a population and the evolutionary process of computational agents in a lattice environment, where each agent corresponds to a candidate solution to the detection problem of functional modules in a PPI network. First, the approach utilizes a connection-based encoding scheme to model an agent, and employs a random-walk behavior merged topological characteristics with functional information to construct a solution. Next, it applies several evolutionary operators, i.e., competition, crossover, and mutation, to realize information exchange among agents as well as solution evolution. Systematic experiments have been conducted on three benchmark testing sets of yeast networks. Experimental results show that the approach is more effective compared to several other existing algorithms.

Conclusions

The algorithm has the characteristics of outstanding recall, F-measure, sensitivity and accuracy while keeping other competitive performances, so it can be applied to the biological study which requires high accuracy.  相似文献   

2.
3.
4.

Background

Understanding protein complexes is important for understanding the science of cellular organization and function. Many computational methods have been developed to identify protein complexes from experimentally obtained protein-protein interaction (PPI) networks. However, interaction information obtained experimentally can be unreliable and incomplete. Reconstructing these PPI networks with PPI evidences from other sources can improve protein complex identification.

Results

We combined PPI information from 6 different sources and obtained a reconstructed PPI network for yeast through machine learning. Some popular protein complex identification methods were then applied to detect yeast protein complexes using the new PPI networks. Our evaluation indicates that protein complex identification algorithms using the reconstructed PPI network significantly outperform ones on experimentally verified PPI networks.

Conclusions

We conclude that incorporating PPI information from other sources can improve the effectiveness of protein complex identification.  相似文献   

5.

Background

A goal of systems biology is to analyze large-scale molecular networks including gene expressions and protein-protein interactions, revealing the relationships between network structures and their biological functions. Dividing a protein-protein interaction (PPI) network into naturally grouped parts is an essential way to investigate the relationship between topology of networks and their functions. However, clear modular decomposition is often hard due to the heterogeneous or scale-free properties of PPI networks.

Methodology/Principal Findings

To address this problem, we propose a diffusion model-based spectral clustering algorithm, which analytically solves the cluster structure of PPI networks as a problem of random walks in the diffusion process in them. To cope with the heterogeneity of the networks, the power factor is introduced to adjust the diffusion matrix by weighting the transition (adjacency) matrix according to a node degree matrix. This algorithm is named adjustable diffusion matrix-based spectral clustering (ADMSC). To demonstrate the feasibility of ADMSC, we apply it to decomposition of a yeast PPI network, identifying biologically significant clusters with approximately equal size. Compared with other established algorithms, ADMSC facilitates clear and fast decomposition of PPI networks.

Conclusions/Significance

ADMSC is proposed by introducing the power factor that adjusts the diffusion matrix to the heterogeneity of the PPI networks. ADMSC effectively partitions PPI networks into biologically significant clusters with almost equal sizes, while being very fast, robust and appealing simple.  相似文献   

6.
7.
8.
9.
10.

Introduction

Our objective was to utilise network analysis to identify protein clusters of greatest potential functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA).

Methods

JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome FI Cytoscape 2.83 Plugin and the Disease Association Protein-Protein Link Evaluator (Dapple) algorithm were used to assess the functionality of the biological pathways within the MEN and to statistically rank the proteins. JIA gene expression data were integrated with the MEN and clusters of functionally important proteins derived using MCODE.

Results

A JIA interactome of 2,479 proteins was built from 348 JIA associated genes. The MEN, representing the most functionally related components of the network, comprised of seven clusters, with distinct functional characteristics. Four gene expression datasets from peripheral blood mononuclear cells (PBMC), neutrophils and synovial fluid monocytes, were mapped onto the MEN and a list of genes enriched for functional significance identified. This analysis revealed the genes of greatest potential functional importance to be PTPN2 and STAT1 for oligoarticular JIA and KSR1 for RF-ve polyarticular JIA. Clusters of 23 and 14 related proteins were derived for oligoarticular and RF-ve polyarticular JIA respectively.

Conclusions

This first report of the application of network biology to JIA, integrating genetic association findings and gene expression data, has prioritised protein clusters for functional validation and identified new pathways for targeted pharmacological intervention.  相似文献   

11.

Background

Experimental methods for the identification of essential proteins are always costly, time-consuming, and laborious. It is a challenging task to find protein essentiality only through experiments. With the development of high throughput technologies, a vast amount of protein-protein interactions are available, which enable the identification of essential proteins from the network level. Many computational methods for such task have been proposed based on the topological properties of protein-protein interaction (PPI) networks. However, the currently available PPI networks for each species are not complete, i.e. false negatives, and very noisy, i.e. high false positives, network topology-based centrality measures are often very sensitive to such noise. Therefore, exploring robust methods for identifying essential proteins would be of great value.

Method

In this paper, a new essential protein discovery method, named CoEWC (Co-Expression Weighted by Clustering coefficient), has been proposed. CoEWC is based on the integration of the topological properties of PPI network and the co-expression of interacting proteins. The aim of CoEWC is to capture the common features of essential proteins in both date hubs and party hubs. The performance of CoEWC is validated based on the PPI network of Saccharomyces cerevisiae. Experimental results show that CoEWC significantly outperforms the classical centrality measures, and that it also outperforms PeC, a newly proposed essential protein discovery method which outperforms 15 other centrality measures on the PPI network of Saccharomyces cerevisiae. Especially, when predicting no more than 500 proteins, even more than 50% improvements are obtained by CoEWC over degree centrality (DC), a better centrality measure for identifying protein essentiality.

Conclusions

We demonstrate that more robust essential protein discovery method can be developed by integrating the topological properties of PPI network and the co-expression of interacting proteins. The proposed centrality measure, CoEWC, is effective for the discovery of essential proteins.  相似文献   

12.
13.

Background

Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods.

Results

On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments.

Conclusions

The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0383-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.

Background

In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis.

Results

We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership.

Conclusions

The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-308) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

One of the crucial steps toward understanding the biological functions of a cellular system is to investigate protein–protein interaction (PPI) networks. As an increasing number of reliable PPIs become available, there is a growing need for discovering PPIs to reconstruct PPI networks of interesting organisms. Some interolog-based methods and homologous PPI families have been proposed for predicting PPIs from the known PPIs of source organisms.

Results

Here, we propose a multiple-strategy scoring method to identify reliable PPIs for reconstructing the mouse PPI network from two well-known organisms: human and fly. We firstly identified the PPI candidates of target organisms based on homologous PPIs, sharing significant sequence similarities (joint E-value ≤ 1 × 10−40), from source organisms using generalized interolog mapping. These PPI candidates were evaluated by our multiple-strategy scoring method, combining sequence similarities, normalized ranks, and conservation scores across multiple organisms. According to 106,825 PPI candidates in yeast derived from human and fly, our scoring method can achieve high prediction accuracy and outperform generalized interolog mapping. Experiment results show that our multiple-strategy score can avoid the influence of the protein family size and length to significantly improve PPI prediction accuracy and reflect the biological functions. In addition, the top-ranked and conserved PPIs are often orthologous/essential interactions and share the functional similarity. Based on these reliable predicted PPIs, we reconstructed a comprehensive mouse PPI network, which is a scale-free network and can reflect the biological functions and high connectivity of 292 KEGG modules, including 216 pathways and 76 structural complexes.

Conclusions

Experimental results show that our scoring method can improve the predicting accuracy based on the normalized rank and evolutionary conservation from multiple organisms. Our predicted PPIs share similar biological processes and cellular components, and the reconstructed genome-wide PPI network can reflect network topology and modularity. We believe that our method is useful for inferring reliable PPIs and reconstructing a comprehensive PPI network of an interesting organism.  相似文献   

17.
18.

Background

Increasing number of eQTL (Expression Quantitative Trait Loci) datasets facilitate genetics and systems biology research. Meta-analysis tools are in need to jointly analyze datasets of same or similar issue types to improve statistical power especially in trans-eQTL mapping. Meta-analysis framework is also necessary for ChrX eQTL discovery.

Results

We developed a novel tool, meta-eqtl, for fast eQTL meta-analysis of arbitrary sample size and arbitrary number of datasets. Further, this tool accommodates versatile modeling, eg. non-parametric model and mixed effect models. In addition, meta-eqtl readily handles calculation of chrX eQTLs.

Conclusions

We demonstrated and validated meta-eqtl as fast and comprehensive tool to meta-analyze multiple datasets and ChrX eQTL discovery. Meta-eqtl is a set of command line utilities written in R, with some computationally intensive parts written in C. The software runs on Linux platforms and is designed to intelligently adapt to high performance computing (HPC) cluster. We applied the novel tool to liver and adipose tissue data, and revealed eSNPs underlying diabetes GWAS loci.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号