首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This study aimed to investigate the expression of Twist in gastric cancer tissues and its correlation between Twist and the epithelial-mesenchymal transition (EMT). By means of RT-PCR and Western blot, the mRNA and protein expressions of Twist, E-cadherin, and Vimentin in 61 gastric cancer tissues and adjacent normal tissues were detected. The positive rates of Twist, E-cadherin, and Vimentin mRNA expression in gastric cancer tissues were 73.9. 40.6, and 60.9 %, respectively; compared to the expression of these genes in adjacent normal tissues (2.9, 75.4, and 27.5 %), the differences were significant (p < 0.05). The E-cadherin protein expression level in gastric cancer tissues was significantly lower than that in the adjacent normal tissues (p < 0.05). After the transfection of Twist siRNA into the MKN45 cells, the protein expression of Twist was significantly reduced (p < 0.05), the protein expression of E-cadherin was significantly increased, and the number of cells that passed through the Transwell chamber was significantly lower than that in the non-transfected control group as well as the transfected control group (p < 0.05). Twist may be associated with the epithelial-mesenchymal transition in gastric cancer and the tumorigenesis, invasion, and metastasis of gastric cancer.  相似文献   

4.
5.
6.
7.
8.
9.
《Translational oncology》2020,13(11):100841
Gastric cancer is one of the most lethal cancers worldwide. FYN, a gene that is differentially expressed in gastric cancer, is considered a critical metastasis regulator in several solid tumors, but its role in gastric cancer is still unclear. This study aimed to evaluate the role of FYN and test whether FYN promotes migration and invasion of gastric cancer cells in vitro and in vivo via STAT3 signaling. FYN was overexpressed in gastric cancer and positively correlated with metastasis. FYN knockdown significantly decreased cancer cell migration and invasion, whereas FYN overexpression increased cancer migration and invasion. Genetic inhibition of FYN decreased the number of metastatic lung nodules in vivo. Several epithelial-mesenchymal transition markers were positively correlated with FYN expression, indicative of FYN involvement in this transition. Furthermore, gene set enrichment analysis of a Cancer Genome Atlas dataset revealed that the STAT3 signaling pathway was positively correlated with FYN expression. STAT3 inhibition reversed the FYN-mediated epithelial-mesenchymal transition and suppressed metastasis. In conclusion, FYN promotes gastric cancer metastasis possibly by activating STAT3-mediated epithelial mesenchymal transition and may be a novel therapeutic target for gastric cancer.  相似文献   

10.
Although cancers can be initially treated with the epidermal growth factor receptor (EGFR) inhibitor, gefitinib, continued gefitinib therapy does not benefit the survival of patients due to acquired resistance through EGFR mutations, c-MET amplification, or epithelial-mesenchymal transition (EMT). It is of further interest to determine whether mesenchymal-like, but not epithelial-like, cancer cells can become resistant to gefitinib by bypassing EGFR signaling and acquiring alternative routes of proliferative and survival signaling. Here we examined whether gefitinib resistance of cancer cells can be caused by transmembrane 4 L six family member 5 (TM4SF5), which has been shown to induce EMT via cytosolic p27Kip1 stabilization. Gefitinib-resistant cells exhibited higher and/or sustained TM4SF5 expression, cytosolic p27Kip1 stabilization, and mesenchymal phenotypes, compared with gefitinib-sensitive cells. Conversion of gefitinib-sensitive to -resistant cells by introduction of the T790M EGFR mutation caused enhanced and sustained expression of TM4SF5, phosphorylation of p27Kip1 Ser10 (responsible for cytosolic location), loss of E-cadherin from cell-cell contacts, and gefitinib-resistant EGFR and survival signaling activities. Additionally, TM4SF5 overexpression lessened the sensitivity of NSCLC cells to gefitinib. Suppression of TM4SF5 or p27Kip1 in gefitinib-resistant cells via the T790M EGFR mutation or TM4SF5 expression rendered them gefitinib-sensitive, displaying more epithelial-like and less mesenchymal-like characteristics. Together, these results indicate that TM4SF5-mediated EMT may have an important function in the gefitinib resistance of cancer cells.  相似文献   

11.
12.
Cisplatin is the major chemotherapeutic drug in gastric cancer, particularly in treating advanced gastric cancer. Tumour cells often develop resistance to chemotherapeutic drugs, which seriously affects the efficacy of chemotherapy. GPR30 is a novel oestrogen receptor that is involved in the invasion, metastasis and drug resistance of many tumours. Targeting GPR30 has been shown to increase the drug sensitivity of breast cancer cells. However, few studies have investigated the role of GPR30 in gastric cancer. Epithelial-mesenchymal transition (EMT) has been shown to be associated with the development of chemotherapeutic drug resistance. In this study, we demonstrated that GPR30 is involved in cisplatin resistance by promoting EMT in gastric cancer. GPR30 knockdown resulted in increased sensitivity of different gastric cancer (GC) cells to cisplatin and alterations in the epithelial/mesenchymal markers. Furthermore, G15 significantly enhanced the cisplatin sensitivity of GC cells while G1 inhibited this phenomenon. In addition, EMT occurred when AGS and BGC-823 were treated with cisplatin. Down-regulation of GPR30 with G15 inhibited this transformation, while G1 promoted it. Taken together, these results revealed the role of GPR30 in the formation of cisplatin resistance, suggesting that targeting GPR30 signalling may be a potential strategy for improving the efficacy of chemotherapy in gastric cancer.  相似文献   

13.
14.
Parallel mechanisms of epigenetic reprogramming in the germline   总被引:3,自引:0,他引:3  
Germ cells possess the extraordinary and unique capacity to give rise to a new organism and create an enduring link between all generations. To acquire this property, primordial germ cells (PGCs) transit through an unprecedented programme of sequential epigenetic events that culminates in an epigenomic basal state that is the foundation of totipotency. This process is underpinned by genome-wide DNA demethylation, which may occur through several overlapping pathways, including conversion to 5-hydroxymethylcytosine. We propose that the epigenetic programme in PGCs operates through multiple parallel mechanisms to ensure robustness at the level of individual cells while also being flexible through functional redundancy to guarantee high fidelity of the process. Gaining a better understanding of the molecular mechanisms that direct epigenetic reprogramming in PGCs will enhance our ability to manipulate epigenetic memory, cell-fate decisions and applications in regenerative medicine.  相似文献   

15.

Background  

Mouse preimplantation development is characterized by both active and passive genomic demethylation. A short isoform of the prevalent maintenance DNA methyltransferase (Dnmt1S) is found in the cytoplasm of preimplantation embryos and transiently enters the nucleus only at the 8-cell stage.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号