首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.

Mutations in a single auxin importer gene uncover broad and unexpected effects in nearly all aspects of the development of shoots, inflorescences, and flowers.  相似文献   

3.
4.
The role of auxin in plant development is well known; however, its possible function in root response to abiotic stress is poorly understood. In this study, we demonstrate a novel role of auxin transport in plant tolerance to oxidative stress caused by arsenite. Plant response to arsenite [As(III)] was evaluated by measuring root growth and markers for stress on seedlings treated with control or As(III)‐containing medium. Auxin transporter mutants aux1, pin1 and pin2 were significantly more sensitive to As(III) than the wild type (WT). Auxin transport inhibitors significantly reduced plant tolerance to As(III) in the WT, while exogenous supply of indole‐3‐acetic acid improved As(III) tolerance of aux1 and not that of WT. Uptake assays using H3‐IAA showed As(III) affected auxin transport in WT roots. As(III) increased the levels of H2O2 in WT but not in aux1, suggesting a positive role for auxin transport through AUX1 on plant tolerance to As(III) stress via reactive oxygen species (ROS)‐mediated signalling. Compared to the WT, the mutant aux1 was significantly more sensitive to high‐temperature stress and salinity, also suggesting auxin transport influences a common element shared by plant tolerance to arsenite, salinity and high‐temperature stress.  相似文献   

5.
6.
Polar auxin transport (PAT) plays a critical role in the regulation of plant growth and development. Auxin influx carrier AUX1 is predominantly localized to the upper side of specific root cells in Arabidopsis. Overexpression of OsAGAP, an ARF-GTPase activating protein in rice, could induce the accumulation of AUX1. But the mechanism is poorly known. Here we reported that over-expression of ARF-GAP could reduce the thickness and bundling of microfilament (MF) which possibly could greatly interfere with the endocytosis of AUX1 early endosome; but not the exocytosis of AUX1 recycling endosome. Therefore, AFR-GAP over-expression suppressed-MF bundling is likely involved in regulating endocytosis of Auxin influx carrier AUX1 and in mediating auxin dependent plant development.      相似文献   

7.
Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.  相似文献   

8.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

9.
A Role for Auxin in Flower Development   总被引:3,自引:0,他引:3  
Auxin has long been implicated in many aspects of plant growth and development including flower development. However, the exact roles of auxin in flower development have not been well defined until the recent identification of auxin biosynthesis mutants. Auxin is necessary for the inltiation of floral primordia, and the disruption of auxin biosynthesis, polar auxin transport or auxin signaling leads to the failure of flower formation. Auxin also plays an essential role in specifying the number and Identity of floral organs. Further analysis of the relationship between the auxin pathways and the known flower development genes will provide critical information regarding mechanisms of organogenesis and pattern formation in plants.  相似文献   

10.
生长素调控植物重力反应的分子机理研究   总被引:1,自引:0,他引:1  
重力反应是植物对环境的一种适应现象。生长素参与植物环境适应与发育调控的过程,重力反应过程的核心之一是在重力反应器官形成生长素的浓度梯度,诱导下游基因的差异表达。生长素的合成、代谢、极性运输及信号转导在此过程中发挥了关键作用。该文以拟南芥和水稻的研究为基础,综述了近几年对生长素调控植株重力反应的分子机理的研究进展,并对该领域未来的研究进行展望。  相似文献   

11.
Auxin is a plant growth regulator involved in diverse fundamental developmental responses. Much is now known about auxin transport, via influx and efflux carriers, and about auxin perception and its role in gene regulation. Many developmental processes are dependent on peaks of auxin concentration and, to date, attention has been directed at the role of polar auxin transport in generating and maintaining auxin gradients. However, surprisingly little attention has focussed on the role and significance of auxin biosynthesis, which should be expected to contribute to active auxin pools. Recent reports on the function of the YUCCA flavin monooxygenases and a tryptophan aminotransferase in Arabidopsis have caused us to look again at the importance of local biosynthesis in developmental processes. Many alternative and redundant pathways of auxin synthesis exist in many plants and it is emerging that they may function in response to environmental cues.  相似文献   

12.
Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.  相似文献   

13.
14.
生长素输出载体PIN家族研究进展   总被引:1,自引:0,他引:1  
林雨晴  齐艳华 《植物学报》2021,56(2):151-165
生长素极性运输调控植物的生长发育。生长素极性运输主要依赖3类转运蛋白: AUX/LAX、PIN和ABCB蛋白家族。生长素在细胞间流动的方向与PIN蛋白在细胞上的极性定位密切相关。PIN蛋白由1个中心亲水环和2个由中心亲水环隔开的疏水区组成。中心亲水环上含多个磷酸化位点,其为一些蛋白激酶的靶点。PIN蛋白受多方面调控,包...  相似文献   

15.
The auxin influx carrier is essential for correct leaf positioning   总被引:8,自引:0,他引:8  
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.  相似文献   

16.
Auxin transport in maize roots in response to localized nitrate supply   总被引:2,自引:0,他引:2  
Liu J  An X  Cheng L  Chen F  Bao J  Yuan L  Zhang F  Mi G 《Annals of botany》2010,106(6):1019-1026

Background and Aims

Roots typically respond to localized nitrate by enhancing lateral-root growth. Polar auxin transport has important roles in lateral-root formation and growth; however, it is a matter of debate whether or how auxin plays a role in the localized response of lateral roots to nitrate.

Methods

Treating maize (Zea mays) in a split-root system, auxin levels were quantified directly and polar transport was assayed by the movement of [3H]IAA. The effects of exogenous auxin and polar auxin transport inhibitors were also examined.

Key Results

Auxin levels in roots decreased more in the nitrate-fed compartment than in the nitrate-free compartment and nitrate treatment appeared to inhibit shoot-to-root auxin transport. However, exogenous application of IAA only partially reduced the stimulatory effect of localized nitrate, and auxin level in the roots was similarly reduced by local applications of ammonium that did not stimulate lateral-root growth.

Conclusions

It is concluded that local applications of nitrate reduced shoot-to-root auxin transport and decreased auxin concentration in roots to a level more suitable for lateral-root growth. However, alteration of root auxin level alone is not sufficient to stimulate lateral-root growth.  相似文献   

17.
18.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.  相似文献   

19.
Auxin is an essential phytohormone that regulates many aspects of plant development. To identify new genes that function in auxin signaling, we performed a genetic screen for Arabidopsis thaliana mutants with an alteration in the expression of the auxin-responsive reporter DR5rev:GFP (for green fluorescent protein). One of the mutants recovered in this screen, called weak auxin response1 (wxr1), has a defect in auxin response and exhibits a variety of auxin-related growth defects in the root. Polar auxin transport is reduced in wxr1 seedlings, resulting in auxin accumulation in the hypocotyl and cotyledons and a reduction in auxin levels in the root apex. In addition, the levels of the PIN auxin transport proteins are reduced in the wxr1 root. We also show that WXR1 is ROOT UV-B SENSITIVE2 (RUS2), a member of the broadly conserved DUF647 domain protein family found in diverse eukaryotic organisms. Our data indicate that RUS2/WXR1 is required for auxin transport and to maintain the normal levels of PIN proteins in the root.  相似文献   

20.
Auxin polar transport is crucial in regulating plant growth and patterning. As auxin efflux carriers, the PIN FORMED (PIN) proteins are responsible for transportation of auxin out of the cell. There are eight and ten PIN members in Arabidopsis (AtPIN) and Medicago truncatula (MtPIN), respectively. Compared with MtPIN10/SMOOTH LEAF MARGIN1 (SLM1), MtPIN4 exhibits a closer relationship with AtPIN1 based phylogenetic analysis. In addition, the gene structure and distribution of transmembrane segments of MtPIN4, MtPIN5 and MtPIN10/SLM1 are similar, implying possible redundant roles among them. However, analysis using Gene Expression Atlas revealed different expression patterns among MtPIN4, MtPIN5 and MtPIN10/SLM1. Loss of function of MtPIN10/SLM1 in M. truncatula resulted in pleiotropic phenotypes in different organs, which are similar with the defects in the pin1 mutant of Arabidopsis, suggesting that the MtPIN10/SLM1 is a putative ortholog of AtPIN1. MtPIN4, MtPIN5 and MtPIN10/SLM1 may have limited redundant functions in the development of M. truncatula. The creation of double and triple mutants will help to elucidate their potential roles in auxin transport and plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号