首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
International efforts to standardize regulations and study designs and to promote the principles of Reduction, Replacement, and Refinement (the 3 Rs) have reduced and refined animal use. In NASA ARC and KSC, researchers are responsible only for activities related directly to the conduct of their animal experiments. The IACUC plays an important role in conformity with NIH policies. Even if researchers design protocols of the space life science in Japan, the animal experiments should be carried out under the global harmonized conditions in accordance with NIH/NASA policies, guides and rules. It is important that researchers himself must look forward the ethical animal experiment.  相似文献   

2.
Any experiment involving living organisms requires justification of the need and moral defensibleness of the study. Statistical planning, design, and sample size calculation of the experiment are no less important review criteria than general medical and ethical points to consider. Errors made in the statistical planning and data evaluation phase can have severe consequences on both results and conclusions. They might proliferate and thus impact future trials—an unintended outcome of fundamental research with profound ethical consequences. Unified statistical standards are currently missing for animal review boards in Germany. In order to accompany, we developed a biometric form to be filled and handed in with the proposal at the concerned local authority on animal welfare. It addresses relevant points to consider for biostatistical planning of animal experiments and can help both the applicants and the reviewers in overseeing the entire experiment(s) planned. Furthermore, the form might also aid in meeting the current standards set by the 3+3R's principle of animal experimentation: Replacement, Reduction, Refinement as well as Robustness, Registration, and Reporting. The form has already been in use by the concerned local authority of animal welfare in Berlin, Germany. In addition, we provide reference to our user guide giving more detailed explanation and examples for each section of the biometric form. Unifying the set of biostatistical aspects will help both the applicants and the reviewers to equal standards and increase quality of preclinical research projects, also for translational, multicenter, or international studies.  相似文献   

3.
Myocardial infarction still remains the main cause of death in western countries, despite considerable progress in the stent development area in the last decades. For clarification of the underlying mechanisms and the development of new therapeutic strategies, the availability of valid animal models are mandatory. Since we need new insights into pathomechanisms of cardiovascular diseases under in vivo conditions to combat myocardial infarction, the validity of the animal model is a crucial aspect. However, protection of animals are highly relevant in this context. Therefore, we establish a minimally invasive and simple model of myocardial infarction in mice, which assures a high reproducibility and survival rate of animals. Thus, this models fulfils the requirements of the 3R principle (Replacement, Refinement and Reduction) for animal experiments and assure the scientific information needed for further developing of therapeutical strategies for cardiovascular diseases.  相似文献   

4.
The breeding of transgenic animals requires that each individual offspring be analysed for integration of transgenic deoxyribonucleic acid (DNA), unless exclusively homozygous animals are mated. The standard protocol for identification of transgenic animals (Hogan et al. 1994) is based on tissue samples and preparation of chromosomal DNA including proteinase K digestion and phenol/chloroform extraction. The procedure described here represents a much simpler and faster method to screen offspring for the transgene DNA. It is based on the use of hair bulbs as sample material, which can be directly used for polymerase chain reaction (PCR) after alkaline lysis. This protocol allows large numbers of animals to be easily screened in a minimum amount of time. A unique advantage though, is the reduction of the distress caused to the animals. With respect to the 3Rs (Replacement, Reduction, Refinement), and because of technical advantages this method may replace ear or tail clipping.  相似文献   

5.
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.  相似文献   

6.
The Three Rs form the basis of review of animal-use protocols by Animal Ethics Committees (AECs), but little research has examined how AECs actually interpret and implement the Three Rs. This topic was explored through in-depth, open-ended interviews with 28 members of AECs at four Canadian universities. In describing protocol review, AEC members rarely mentioned the Three Rs, but most reported applying some aspects of the basic concepts. Comments identified several factors that could impede full application of the Three Rs: incomplete understanding of the Three Rs (especially Refinement), trust that researchers implement Replacement and Reduction themselves, belief by some members that granting agency review covers the Three Rs, focus on sample size rather than experimental design to achieve Reduction, focus on harm caused by procedures to the exclusion of housing and husbandry, and lack of consensus on key issues, notably on the nature and moral significance of animal pain and suffering, and on whether AECs should minimise overall harm to animals. The study suggests ways to achieve more consistent application of the Three Rs, by providing AECs with up-to-date information on the Three Rs and with access to statistical expertise, by consensus-building on divisive issues, and by training on the scope and implementation of the Three Rs.  相似文献   

7.
Here we introduce the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines, produced by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), which are published in this issue of the journal with our endorsement, and will be incorporated into our Instructions to Authors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The principles of the 3Rs, Replacement, Reduction and Refinement, are being increasingly incorporated into legislations, guidelines and practice of animal experiments in order to safeguard animal welfare. In the present study we have studied the systematic application of 3R principles to toxicological research in the pharmaceutical industry, with particular focus on achieving reductions in animal numbers used in regulatory and investigatory in vivo studies. The work also details major factors influencing these reductions including the conception of ideas, cross-departmental working and acceptance into the work process. Data from 36 reduction projects were collected retrospectively from work between 2006 and 2010. Substantial reduction in animal use was achieved by different strategies, including improved study design, method development and project coordination. Major animal savings were shown in both regulatory and investigative safety studies. If a similar (i.e. 53%) reduction had been achieved simultaneously within the twelve largest pharmaceutical companies, the equivalent reduction world-wide would be about 150,000 rats annually. The results point at the importance of a strong 3R culture, with scientific engagement, collaboration and a responsive management being vital components. A strong commitment in leadership for the 3R is recommended to be translated into cross-department and inter-profession involvement in projects for innovation, validation and implementation. Synergies between all the three Rs are observed and conclude that in silico-, in vitro- and in vivo-methods all hold the potential for applying the reduction R and should be consequently coordinated at a strategic level.  相似文献   

9.
The British Government's proposals for the transposition of European Directive 2010/63/EU are discussed under five main headings: direct transposition without major effects on the UK legislation, introduction of stricter requirements in the Directive, retention of stricter controls in the Animals [Scientific Procedures] Act 1986, questions requiring further consideration, and matters of concern. The Home Office had published a consultation on the options in 2011, which resulted in 98 responses from organisations and 13,458 responses from individuals. Our main concerns relate to the use of non-human primates, the annual publication of the UK statistics on laboratory animal use, and the provision of greater transparency on how animals are used, and why. Finally, we conclude that the new Directive and its transposition into the national laws of the Member states provide a renewed opportunity for genuine commitment to the Three Rs, leading to progressive and significant Reduction, Refinement and Replacement.  相似文献   

10.
Recently, the French National Institute for Agricultural Research appointed an expert committee to review the issue of pain in food-producing farm animals. To minimise pain, the authors developed a ‘3S’ approach accounting for ‘Suppress, Substitute and Soothe’ by analogy with the ‘3Rs’ approach of ‘Reduction, Refinement and Replacement’ applied in the context of animal experimentation. Thus, when addressing the matter of pain, the following steps and solutions could be assessed, in the light of their feasibility (technical constraints, logistics and regulations), acceptability (societal and financial aspects) and availability. The first solution is to suppress any source of pain that brings no obvious advantage to the animals or the producers, as well as sources of pain for which potential benefits are largely exceeded by the negative effects. For instance, tail docking of cattle has recently been eliminated. Genetic selection on the basis of resistance criteria (as e.g. for lameness in cattle and poultry) or reduction of undesirable traits (e.g. boar taint in pigs) may also reduce painful conditions or procedures. The second solution is to substitute a technique causing pain by another less-painful method. For example, if dehorning cattle is unavoidable, it is preferable to perform it at a very young age, cauterising the horn bud. Animal management and constraint systems should be designed to reduce the risk for injury and bruising. Lastly, in situations where pain is known to be present, because of animal management procedures such as dehorning or castration, or because of pathology, for example lameness, systemic or local pharmacological treatments should be used to soothe pain. These treatments should take into account the duration of pain, which, in the case of some management procedures or diseases, may persist for longer periods. The administration of pain medication may require the intervention of veterinarians, but exemptions exist where breeders are allowed to use local anaesthesia (e.g. castration and dehorning in Switzerland). Extension of such exemptions, national or European legislation on pain management, or the introduction of animal welfare codes by retailers into their meat products may help further developments. In addition, veterinarians and farmers should be given the necessary tools and information to take into account animal pain in their management decisions.  相似文献   

11.
The Committee to Promote Principles of Reduction, Refinement and Replacement of Animal Testing in Industrial Toxicology Laboratories was established in 1987 to work toward industrywide improvements in laboratory animal testing methods. The committee's goals are to gather information about effective nonanimal testing techniques and other methods of conserving and improving the care of laboratory animals, to work toward the systematic validation of nonanimal alternatives, and to disseminate useful information about progressive programs and policies throughout the industrial toxicology community. This is the first in a continuing series of reports the committee plans to produce as part of an ongoing program to promote communication among industrial toxicologists about successful methods of reducing, refining and replacing animal testing. Here are some of the report's major findings: (1) Animal care and use committees charged with the oversight of laboratory animal use are a universal practice at the companies surveyed. (2) Significant reductions in the number of animals used for acute toxicity testing have taken place at all the companies during the last 5- to 10-year period. (3) Structure-activity relationships (predicting a test compound's properties based on the known properties of familiar chemicals with similar structures) are widely used to minimize, but not replace, the use of animals. (4) Tissue and organ culture systems are being used with increasing frequency for screening and mechanistic studies, but are not completely replacing animal evaluations as a final step. (5) There is a pressing need for the systematic and scientifically sound validation of nonanimal alternative techniques to reduce the use of animals in toxicology testing while satisfying requirements for the protection of public safety.  相似文献   

12.
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of “live cephalopods” became regulated within the European Union by Directive 2010/63/EU on the “Protection of Animals used for Scientific Purposes”, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce “guidelines” and the potential contribution of neuroscience research to cephalopod welfare.  相似文献   

13.
It is now more than 20 years since both Council of Europe Convention ETS123 and EU Directive 86/609/EEC were introduced, to promote the implementation of the Three Rs in animal experimentation and to provide guidance on animal housing and care. It might therefore be expected that reports of the implementation of the Three Rs in animal research papers would have increased during this period. In order to test this hypothesis, a literature survey of animal-based research was conducted. A randomly-selected sample from 16 high-profile medical journals, of original research papers arising from European institutions that featured experiments which involved either mice or primates, were identified for the years 1986 and 2006 (Total sample = 250 papers). Each paper was scored out of 10 for the incidence of reporting on the implementation of Three Rs-related factors corresponding to Replacement (justification of non-use of non-animal methods), Reduction (statistical analysis of the number of animals needed) and Refinement (housing aspects, i.e. increased cage size, social housing, enrichment of cage environment and food; and procedural aspects, i.e. the use of anaesthesia, analgesia, humane endpoints, and training for procedures with positive reinforcement). There was no significant increase in overall reporting score over time, for either mouse or primate research. By 2006, mouse research papers scored an average of 0 out of a possible 10, and primate research papers scored an average of 1.5. This review provides systematic evidence that animal research is still not properly reported, and supports the call within the scientific community for action to be taken by journals to update their policies.  相似文献   

14.
Laboratory animals and animal experiments are foundations and important support conditions for life sciences, especially for medical research. The animal experiments have drawn extensive attention from the society because of the ethical issue. This paper takes Wenzhou Medical University as an example to give a brief introduction to the ethical review about laboratory animals in the university so as to further draw attention and concerns from the public about the ethical issue of laboratory animals. We successively introduce its scientific projects, nurturing environment and ethical review of laboratory animals.  相似文献   

15.
16.
The Three Rs are the main principles used by Animal Ethics Committees in the governance of animal experimentation, but they appear not to cover some ethical issues that arise today. These include: a) claims that certain species should be exempted on principle from harmful research; b) increased emphasis on enhancing quality of life of research animals; c) research involving genetically modified (GM) animals; and d) animals bred as models of disease. In some cases, the Three Rs can be extended to cover these developments. The burgeoning use of GM animals in science calls for new forms of reduction through improved genetic modification technology, plus continued attention to alternative approaches and cost-benefit analyses that include the large numbers of animals involved indirectly. The adoption of more expanded definitions of refinement that go beyond minimising distress will capture concerns for enhancing the quality of life of animals through improved husbandry and handling. Targeting refinement to the unpredictable effects of gene modification may be difficult; in these cases, careful attention to monitoring and endpoints are the obvious options. Refinement can also include sharing data about the welfare impacts of gene modifications, and modelling earlier stages of disease, in order to reduce the potential suffering caused to disease models. Other issues may require a move beyond the Three Rs. Certain levels of harm, or numbers and use of certain species, may be unacceptable, regardless of potential benefits. This can be addressed by supplementing the utilitarian basis of the Three Rs with principles based on deontological and relational ethics. The Three Rs remain very useful, but they require thoughtful interpretation and expansion in order for Animal Ethics Committees to address the full range of issues in animal-based research.  相似文献   

17.
A local survey conducted among scientists into the current practice of searching for information on Three Rs (i.e. Replacement, Reduction and Refinement) methods has highlighted the gap between the statutory requirement to apply Three Rs methods and the lack of criteria to search for them. To verify these findings on a national level, we conducted a survey among scientists throughout The Netherlands. Due to the low response rate, the results give an impression of opinions, rather than being representative of The Netherlands as a whole. The findings of both surveys complement each other, and indicate that there is room for improvement. Scientists perceive searching the literature for information on Three Rs methods to be a difficult task, and specific Three Rs search skills and knowledge of Three Rs databases are limited. Rather than using a literature search, many researchers obtain information on these methods through personal communication, which means that published information on possible Three Rs methods often remains unfound and unused. A solution might be to move beyond the direct search for information on Three Rs methods and choose another approach. One approach that seems rather appropriate is that of systematic review. This provides insight into the necessity for any new animal studies, as well as optimal implementation of available data and the prevention of unnecessary animal use in the future.  相似文献   

18.
19.
When using cephalopods as experimental animals, a number of factors, including morality, quality of information derived from experiments, and public perception, drives the motivation to consider welfare issues. Refinement of methods and techniques is a major step in ensuring protection of cephalopod welfare in both laboratory and field studies. To this end, existing literature that provides details of methods used in the collection, handling, maintenance, and culture of a range of cephalopods is a useful starting point when refining and justifying decisions about animal welfare. This review collates recent literature in which authors have used cephalopods as experimental animals, revealing the extent of use and diversity of cephalopod species and techniques. It also highlights several major issues when considering cephalopod welfare; how little is known about disease in cephalopods and its relationship to senescence and also how to define objective endpoints when animals are stressed or dying as a result of the experiment.  相似文献   

20.
It is shown that Pavlov's opinion is in agreement with the modern requirements for experiments in living animals: use of living animals in experiments is recommended only in the cases when there is no alternative and scientific-practical significance of the planned experiments is justified; minimization (as much as possible) of discomfort, distress and pain of animals under study without sacrifice of the quality of scientific research; use of appropriate number of animals necessary for obtaining reliable results which are adequate to a given experimental situation and general state of the animals inadmissibility of using extra number of animals; drawing up a protocol concerning the experimental procedure and results; reflection in the protocol the techniques of sedation, anesthesia, and euthanasia; constant care of the improvement of the theoretical and practical qualification of a researcher in the ethical questions and experimental technique. Pavlov's views led his time and at present they agree with modern concepts on the experimental ethics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号