首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Do bacteria have genes for genetic exchange? The idea that the bacterial processes that cause genetic exchange exist because of natural selection for this process is shared by almost all microbiologists and population geneticists. However, this assumption has been perpetuated by generations of biology, microbiology and genetics textbooks without ever being critically examined.  相似文献   

2.
Bacteria display many interesting phenotypes such as virulence, tissue specificity and host range, for which it would be useful to know the genetic basis. Association mapping involves identifying causal variants by showing that particular genotypes are statistically associated with a phenotypic trait in a sample of strains taken from a natural population. With the advent of high-throughput genotyping, association mapping is becoming an increasingly powerful approach. However, until recently, association studies had not been used in bacteria because of their strong population structure, which can produce false positives and/or loss of statistical power unless elucidated and taken into account in analyses. Here, we describe how association mapping could be successfully applied to bacteria and outline the necessary sampling and genotyping strategies.  相似文献   

3.
4.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Microbiology.  相似文献   

5.
6.
Can boron get bacteria talking?   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
10.
Biotransformations of (+/−)-geosmin by terpene-degrading bacteria   总被引:1,自引:0,他引:1  
Two terpene-degrading bacteria able to transform (+/−)-geosmin have been identified. Pseudomonas sp. SBR3-tpnb, following growth on γ-terpinene, converts (+/−)-geosmin to several products; the major products are ketogeosmins. Rhodococcus wratislaviensis DLC-cam, isolated on d-camphor, also converts (+/−)-geosmin to several oxidation products, primarily ketogeosmins identical to those produced by strain SBR3-tpnb as well as hydroxygeosmins. This conversion appears to be inducible by (+/−)-geosmin and not by d-camphor.  相似文献   

11.
Why are bacteria refractory to antimicrobials?   总被引:4,自引:0,他引:4  
The incidence of antibiotic resistance in pathogenic bacteria is rising. Antibiotic resistance can be achieved via three distinct routes: inactivation of the drug, modification of the target of action, and reduction in the concentration of drug that reaches the target. It has long been recognized that specific antibiotic resistance mechanisms can be acquired through mutation of the bacterial genome or by gaining additional genes through horizontal gene transfer. Recent attention has also brought to light the importance of different physiological states for the survival of bacteria in the presence of antibiotics. It is now apparent that bacteria have complex, intrinsic resistance mechanisms that are often not detected in the standard antibiotic sensitivity tests performed in clinical laboratories. The development of resistance in bacteria found in surface-associated aggregates or biofilms, owing to these intrinsic mechanisms, is paramount.  相似文献   

12.
Mutualism is ubiquitous in nature but is known to be intrinsically vulnerable with regard to both population dynamics and evolution. Synthetic ecology has indicated that it is feasible for organisms to establish novel mutualism merely through encountering each other by showing that it is feasible to construct synthetic mutualism between organisms. However, bacteria–eukaryote mutualism, which is ecologically important, has not yet been constructed. In this study, we synthetically constructed mutualism between a bacterium and a eukaryote by using two model organisms. We mixed a bacterium, Escherichia coli (a genetically engineered glutamine auxotroph), and an amoeba, Dictyostelium discoideum, in 14 sets of conditions in which each species could not grow in monoculture but potentially could grow in coculture. Under a single condition in which the bacterium and amoeba mutually compensated for the lack of required nutrients (lipoic acid and glutamine, respectively), both species grew continuously through several subcultures, essentially establishing mutualism. Our results shed light on the establishment of bacteria–eukaryote mutualism and indicate that a bacterium and eukaryote pair in nature also has a non-negligible possibility of establishing novel mutualism if the organisms are potentially mutualistic.  相似文献   

13.
14.
At some point in the evolution of life, the domain Bacteria arose from prokaryotic progenitors. The cell that gave rise to the first bacterium has been given the name (among several other names) "last universal ancestor (LUA)". This cell had an extensive, well-developed suite of biochemical strategies that increased its ability to grow. The first bacterium is thought to have acquired a covering, called a sacculus or exoskeleton, that made it stress-resistant. This protected it from rupturing as a result of turgor pressure stress arising from the success of its metabolic abilities. So what were the properties of this cell's wall? Was it Gram-positive or Gram-negative? And was it a coccus or a rod?  相似文献   

15.
Generally speaking, bacteria grow and divide indefinitely, and as long as the growth conditions are maintained they retain constant dimensions and shapes with little variation. How they do this is a question that I have been considering for three decades. Here, I discuss two hypothetical mechanisms, one for Gram-positive rods and the other for Gram-negative rods. These mechanisms are consistent with what is known, but make some unproven assumptions.  相似文献   

16.
17.
18.
An intracellular actin motor in bacteria?   总被引:3,自引:0,他引:3  
Actin performs structural as well as motor-like functions in eukaryotic cells. Orthologues of actin have also been identified in bacteria, where they perform an essential function during cell growth. Bacterial actins are implicated in the maintenance of rod-shaped cell morphology, and appear to form a cytoskeletal structure, localising as helical filaments underneath the cell membrane. Recently, a plasmid-borne actin orthologue has been shown to perform a mitotic-like function during segregation of a plasmid, and chromosomally encoded actin proteins were found to play an important role in chromosome segregation. Based on the findings that actin filaments are dynamic structures in two bacterial species, we propose that actins perform motor functions rather than a purely structural role in bacteria. We suggest that an intracellular motor exists in bacteria that could be derived from an ancestral actin motor that was present in cells early in evolution.  相似文献   

19.
正There are ten major characteristics that are used to differentiate cancer from normal cells and tissue (Hanahan and Weinberg, 2011); detection of bacterial species associated with cancer cells is not included among these characteristics,and at first glance this might seem to be irrelevant. The  相似文献   

20.
What drives bacteria to produce a biofilm?   总被引:19,自引:0,他引:19  
Nearly 40 years ago, Dr. R.J. Gibbons made the first reports of the clinical relevance of what we now know as bacterial biofilms when he published his observations of the role of polysaccharide glycocalyx formation on teeth by Streptococcus mutans [Sci. Am. 238 (1978) 86]. As the clinical relevance of bacterial biofilm formation became increasingly apparent, interest in the phenomenon exploded. Studies are rapidly shedding light on the biomolecular pathways leading to this sessile mode of growth but many fundamental questions remain. The intent of this review is to consider the reasons why bacteria switch from a free-floating to a biofilm mode of growth. The currently available wealth of data pertaining to the molecular genetics of biofilm formation in commonly studied, clinically relevant, single-species biofilms will be discussed in an effort to decipher the motivation behind the transition from planktonic to sessile growth in the human body. Four potential incentives behind the formation of biofilms by bacteria during infection are considered: (1) protection from harmful conditions in the host (defense), (2) sequestration to a nutrient-rich area (colonization), (3) utilization of cooperative benefits (community), (4) biofilms normally grow as biofilms and planktonic cultures are an in vitro artifact (biofilms as the default mode of growth).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号