首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well‐studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
DNA methylation at cytosine-phosphate-guanine (CpG) dinucleotides changes as a function of age in humans and animal models, a process that may contribute to chronic disease development. Recent studies have investigated the role of an oxidized form of DNA methylation – 5-hydroxymethylcytosine (5hmC) – in the epigenome, but its contribution to age-related DNA methylation remains unclear. We tested the hypothesis that 5hmC changes with age, but in a direction opposite to 5-methylcytosine (5mC), potentially playing a distinct role in aging. To characterize epigenetic aging, genome-wide 5mC and 5hmC were measured in longitudinal blood samples (2, 4, and 10 months of age) from isogenic mice using two sequencing methods – enhanced reduced representation bisulfite sequencing and hydroxymethylated DNA immunoprecipitation sequencing. Examining the epigenome by age, we identified 28,196 unique differentially methylated CpGs (DMCs) and 8,613 differentially hydroxymethylated regions (DHMRs). Mouse blood showed a general pattern of epigenome-wide hypermethylation and hypo-hydroxymethylation with age. Comparing age-related DMCs and DHMRs, 1,854 annotated genes showed both differential 5mC and 5hmC, including one gene – Nfic – at five CpGs in the same 250 bp chromosomal region. At this region, 5mC and 5hmC levels both decreased with age. Reflecting these age-related epigenetic changes, Nfic RNA expression in blood decreased with age, suggesting that age-related regulation of this gene may be driven by 5hmC, not canonical DNA methylation. Combined, our genome-wide results show age-related differential 5mC and 5hmC, as well as some evidence that changes in 5hmC may drive age-related DNA methylation and gene expression.  相似文献   

3.
In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine.  相似文献   

4.
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.  相似文献   

5.
胚胎干细胞是一种能够维持自我更新、具有无限扩增能力的多能性干细胞。灵长类多能干细胞(iPSCs)根据其发育能力、细胞形态、基因表达谱以及表观遗传学的差异分为初始态多能干细胞(pPSCs)和原始态多能干细胞(nPSCs)。nPSCs因其容易进行基因工程处理以及体内外再生出功能组织器官等优势而在临床潜在应用上备受关注,因而有效维持ESCs的原始状态对其用于基础及临床研究具有重要意义。nPSCs的线粒体活性和自我更新能力高于pPSCs,且这两种多能性干细胞在DNA甲基化等方面都存在明显差别,DNA甲基化在nPSCs的转化及代谢中起到重要的作用。本文综述了DNA甲基化对ESCs的作用,特别是维持原始态的作用。  相似文献   

6.
Embryonic stem (ES) cells distinct themselves from other cell type populations by their pluripotent ability. The unique features of ES cells are controlled by both genetic and epigenetic factors. Studies have shown that the methylation status of DNA and histones in ES cells is quite different from that of differentiated cells and somatic stem cells. Herein, we summarized recent advances in DNA and histone methylation studies of mammalian ES cells. The methylation status of several key pluripotent regulatory genes is also discussed.  相似文献   

7.
Embryonic stem cells (ESCs) are pluripotent, self‐renewing cells. These cells can be used in applications such as cell therapy, drug development, disease modeling, and the study of cellular differentiation. Investigating the interplay of epigenetics, genetics, and gene expression in control of pluripotence and differentiation could give important insights on how these cells function. One of the best known epigenetic factors is DNA methylation, which is a major mechanism for regulation of gene expression. This phenomenon is mostly seen in imprinted genes and X‐chromosome inactivation where DNA methylation of promoter regions leads to repression of gene expression. Differential DNA methylation of pluripotence‐associated genes such as Nanog and Oct4/Pou5f1 has been observed between pluripotent and differentiated cells. It is clear that tight regulation of DNA methylation is necessary for normal development. As more associations between aberrant DNA methylation and disease are reported, the demand for high‐throughput approaches for DNA methylation analysis has increased. In this article, we highlight these methods and discuss recent DNA methylation studies on ESCs. J. Cell. Biochem. 109: 1–6, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.  相似文献   

9.
The review considers the methods most commonly used to detect DNA methylation, their advantages, potential limitations, and selection for various purposes. A detailed protocol is described for bisulfite treatment, which is used as a preliminary step in the majority of DNA methylation assays.  相似文献   

10.
简要总结DNA羟甲基化在小鼠胚胎干细胞(mouse embryonic stem cells,mESC)中的最新研究进展.DNA甲基化(DNAmethylation)影响染色质的结构与功能,在发育与疾病发生过程中具有重要作用.2009年Tahiliani等发现TET1可以催化甲基化胞嘧啶(5-methylcytosine,5mC)氧化为羟甲基化胞嘧啶(5-hydroxymethylcytosine,5hmC).DNA羟甲基化(DNAhydroxymethylation)被认为是调节DNA甲基化的一种重要方式,成为了表观遗传学的研究热点之一.  相似文献   

11.
MicroRNA mediates DNA methylation of target genes   总被引:1,自引:0,他引:1  
Small RNAs represented by microRNA (miRNA) plays important roles in plant development and responds to biotic and abiotic stresses. Previous studies have placed special emphasis on gene-repression mediated by miRNA. In this work, the DNA methylation pattern of microRNA genes (MIRs) was interrogated. Full-length cDNA and EST were used to confirm the entity of pri-miRNA. In parallel, miRNA in 24 nucleotides (nt) was pooled to detect chromatin modification effect by using bisulfite sequencing data. 97 MIRs were supported by full-length cDNA and 30 more were hit by EST. Notably, methylation levels of conserved MIRs were significantly lower than the non-conserved at all contexts (CG, CHG, and CHH). Additionally, a substantial part of 24-nt miRNA was able to induce target site methylation, providing a broader perspective for researchers.  相似文献   

12.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

13.
Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.  相似文献   

14.
In mammalian genomes, the methylation of cytosine residues within CpG dinucleotides is crucial to normal development and cell differentiation. However, methylation of cytosines in the contexts of CpA, CpT, and CpC (non-CpG methylation) has been reported for decades, yet remains poorly understood. In recent years, whole genome bisulphite sequencing (WGBS) has confirmed significant levels of non-CpG methylation in specific tissues and cell types. Non-CpG methylation has several properties that distinguish it from CpG methylation. Here we review the literature describing non-CpG methylation in mammalian cells, describe the important characteristics that distinguish it from CpG methylation, and discuss its functional importance.  相似文献   

15.
《Epigenetics》2013,8(6):823-828
In mammalian genomes, the methylation of cytosine residues within CpG dinucleotides is crucial to normal development and cell differentiation. However, methylation of cytosines in the contexts of CpA, CpT, and CpC (non-CpG methylation) has been reported for decades, yet remains poorly understood. In recent years, whole genome bisulphite sequencing (WGBS) has confirmed significant levels of non-CpG methylation in specific tissues and cell types. Non-CpG methylation has several properties that distinguish it from CpG methylation. Here we review the literature describing non-CpG methylation in mammalian cells, describe the important characteristics that distinguish it from CpG methylation, and discuss its functional importance.  相似文献   

16.
精子发生(spermatogenesis)是一个高度特化的细胞复杂分化过程,其中DNA二核苷酸CpG甲基化变化与基因转录激活、染色质改构以及遗传印记相关,并且该甲基化与基因表达之间的关系是非直接的,其可通过染色质结构的改变或DNA与蛋白质的相互作用来介导。本文着重介绍精子发生过程中DNA甲基化及其跨代遗传风险、DNA甲基转移酶的调控机制以及DNA甲基化与男性不育之间的关系等,为不育症的防治、精子表观遗传质量评价以及降低辅助生殖技术后代表观遗传疾病风险等提供基础资料。  相似文献   

17.
18.
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.  相似文献   

19.
20.
Heterogeneity of DNA methylation status among alleles is observed in various cell types and is involved in epigenetic gene regulation and cancer biology. However, the individual methylation profile within each allele has not yet been examined at the whole-genome level. In the present study, we applied linkage disequilibrium analysis to the DNA methylation data obtained from whole-genome bisulfite sequencing studies in mouse germline and other types of cells. We found that the methylation status of 2 consecutive CpG sites showed deviation from equilibrium frequency toward concordant linkage (both methylated or both unmethylated) in germline cells. In the imprinting loci where methylation of constituent alleles is known, our analysis detected the deviation toward the concordant linkage as expected. In addition, we applied this analysis to the transitional zone between methylated and unmethylated regions and to the cells undergoing epigenetic reprogramming. In both cases, deviation to the concordant-linked alleles was conspicuous, indicating that the methylation pattern is not random but rather concordant within each allele. These results will provide the key to understanding the mechanism underlying allelic heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号