首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
In this study, we tested the hypothesis that human neutrophil alpha-defensins (HNPs) inhibit hepatic glucose production through a signaling pathway distinct from insulin. The effect of HNP-1 on fasting blood glucose levels and the expression of hepatic gluconeogenic genes was first examined. Using hyperinsulinemic-euglycemic clamps, we determined the effect of HNP-1 on endogenous glucose production, hepatic expression of key gluconeogenic genes and glucose uptake in skeletal muscle in Zucker diabetic fatty rats. In isolated primary hepatocytes, we studied the effect of HNP-1 and -2 on glucose production, expression of gluconeogenic genes, and phosphorylation of Akt, c-Src, and FoxO1. Our results show that HNP-1 reduced blood glucose levels of both normal mice and Zucker diabetic fatty rats predominantly through suppression of hepatic glucose production. HNPs inhibited glycogenolysis and gluconeogenesis in isolated hepatocytes. HNPs also suppressed expression of key gluconeogenic genes including phosphoenoylpyruvate carboxyl kinase and glucose-6-phosphatase. To investigate the mechanism, we found that HNPs stimulated phosphorylation of Akt and FoxO1 without activating IRS1. Nevertheless, HNPs activated c-Src. Blockade of c-Src activity with either a chemical inhibitor PP2 or an alternative inhibitor CSK prevented the inhibitory effect of HNPs on gluconeogenesis. Together, our results support the hypothesis that HNPs can suppress hepatic glucose production through an intracellular mechanism distinct from the classical insulin signaling pathway.  相似文献   

10.
Novel concepts in insulin regulation of hepatic gluconeogenesis   总被引:1,自引:0,他引:1  
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
《Phytomedicine》2015,22(4):477-486
BackgroundRhodiola, a popular herb, has been used for treating high altitude sicknesses, depression, fatigue, and diabetes. However, the detailed mechanisms by which Rhodiola crenulata functions in the liver need further clarification.PurposeThe current study was designed to examine the effects of Rhodiola crenulata root extract (RCE) on hepatic glucose production.MethodsHuman hepatoma HepG2 cells were treated with RCE for 6 h. Glucose production, the expression level of p-AMPK, and the expression of key gluconeogenic genes were measured. The effects of RCE were also studied in Sprague–Dawley (SD) rats. The efficacy and underlying mechanism of RCE in the liver were examined.ResultsRCE significantly suppressed glucose production and gluconeogenic gene expression in HepG2 cells while activating the AMPK signaling pathway. Interestingly, RCE-suppressed hepatic gluconeogenesis was eliminated by an AMPK-specific inhibitor, but not by the PI3K/AKT-specific inhibitor. In addition, oral administration of RCE significantly increased phosphorylated AMPK levels and inhibited gluconeogenic gene expression in the rat liver. Furthermore, RCE treatment also decreased plasma glucose concentration in rats.ConclusionWe present in vitro and in vivo evidence that RCE might exert the glucose-lowering effect partly by inhibiting hepatic gluconeogenesis through activating the AMPK signaling pathway. These findings provide evidence that Rhodiola crenulata may be helpful for the management of type II diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号