首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Background

One aspect in which RNA sequencing is more valuable than microarray-based methods is the ability to examine the allelic imbalance of the expression of a gene. This process is often a complex task that entails quality control, alignment, and the counting of reads over heterozygous single-nucleotide polymorphisms. Allelic imbalance analysis is subject to technical biases, due to differences in the sequences of the measured alleles. Flexible bioinformatics tools are needed to ease the workflow while retaining as much RNA sequencing information as possible throughout the analysis to detect and address the possible biases.

Results

We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility of RNA sequencing. The visualization features can reveal notable, non-trivial allelic imbalance behavior over specific regions, such as exons.

Conclusions

The software provides a complete framework to perform allelic imbalance analyses of aligned RNA sequencing data, from detection to visualization, within the robust and versatile management class, ASEset.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0620-2) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Forming a new species through the merger of two or more divergent parent species is increasingly seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy.

Results

Here we present HyLiTE – a single-step analysis to obtain tables of homeolog expression in a hybrid or allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus allowing HyLiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized for genes with low to moderate expression.

Conclusions

HyLiTE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene expression following genome merger. HyLiTE offers practical advantages over manual methods and existing programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose following genome merger, and offers accurate performance on non-model organisms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0433-8) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.

Background

Next-generation sequencing does not yield fully unbiased estimates for read abundance, which may impact on the conclusions that can be drawn from sequencing data. The ligation step in RNA sequencing library generation is a known source of bias, motivating developments in enzyme technology and library construction protocols. We present the first comparison of the standard duplex adaptor protocol supplied by Life Technologies for use on the Ion Torrent PGM with an alternate single adaptor approach involving CircLigase (CircLig protocol).A correlation between over-representation in sequenced libraries and degree of secondary structure has been reported previously, therefore we also investigated whether bias could be reduced by ligation with an enzyme that functions at a temperature not permissive for such structure.

Results

A pool of small RNA fragments of known composition was converted into a sequencing library using one of three protocols and sequenced on an Ion Torrent PGM. The CircLig protocol resulted in less over-representation of specific sequences than the standard protocol. Over-represented sequences are more likely to be predicted to have secondary structure and to co-fold with adaptor sequences. However, use of the thermostable ligase Methanobacterium thermoautotrophicum RNA ligase K97A (Mth K97A) was not sufficient to reduce bias.

Conclusions

The single adaptor CircLigase-based approach significantly reduces, but does not eliminate, bias in Ion Torrent data. Ligases that function at temperatures to remove the possible influence of secondary structure on library generation may be of value, although Mth K97A is not effective in this case.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-569) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Human leukocyte antigen (HLA) is a group of genes that are extremely polymorphic among individuals and populations and have been associated with more than 100 different diseases and adverse drug effects. HLA typing is accordingly an important tool in clinical application, medical research, and population genetics. We have previously developed a phase-defined HLA gene sequencing method using MiSeq sequencing.

Results

Here we report a simple, high-throughput, and cost-effective sequencing method that includes normalized library preparation and adjustment of DNA molar concentration. We applied long-range PCR to amplify HLA-B for 96 samples followed by transposase-based library construction and multiplex sequencing with the MiSeq sequencer. After sequencing, we observed low variation in read percentages (0.2% to 1.55%) among the 96 demultiplexed samples. On this basis, all the samples were amenable to haplotype phasing using our phase-defined sequencing method. In our study, a sequencing depth of 800x was necessary and sufficient to achieve full phasing of HLA-B alleles with reliable assignment of the allelic sequence to the 8 digit level.

Conclusions

Our HLA sequencing method optimized for 96 multiplexing samples is highly time effective and cost effective and is especially suitable for automated multi-sample library preparation and sequencing.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-645) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号