首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic Sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and multiple internal organs and severe functional and structural microvascular alterations. SSc is considered to be the prototypic systemic fibrotic disorder. Despite currently available therapeutic approaches SSc has a high mortality rate owing to the development of SSc-associated interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH), complications that have emerged as the most frequent causes of disability and mortality in SSc. The pathogenesis of the fibrotic process in SSc is complex and despite extensive investigation the exact mechanisms have remained elusive. Myofibroblasts are the cells ultimately responsible for tissue fibrosis and fibroproliferative vasculopathy in SSc. Tissue myofibroblasts in SSc originate from several sources including expansion of quiescent tissue fibroblasts and tissue accumulation of CD34 + fibrocytes. Besides these sources, myofibroblasts in SSc may result from the phenotypic conversion of endothelial cells into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndoMT). Recently, it has been postulated that EndoMT may play a role in the development of SSc-associated ILD and PAH. However, although several studies have described the occurrence of EndoMT in experimentally induced cardiac, renal, and pulmonary fibrosis and in several human disorders, the contribution of EndoMT to SSc-associated ILD and PAH has not been generally accepted. Here, the experimental evidence supporting the concept that EndoMT plays a role in the pathogenesis of SSc-associated ILD and PAH will be reviewed.  相似文献   

2.
Adipose-derived stem cells(ADSCs)residing in the stromal vascular fraction(SVF)of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis(SSc),a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions.Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients.However,currently available data indicate that ADSCs may represent a double-edged sword in SSc,as they may exhibit a pro-fibrotic and anti-adipogenic phenotype,possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process.Thus,in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications,it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive,anti-inflammatory,anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs.In light of the dual role that ADSCs seem to play in SSc,this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and,at the same time,will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.  相似文献   

3.
Tissue fibrosis and vascular disease are hallmarks of systemic sclerosis (SSc). Transforming growth factor β (TGFβ) is a key-player in fibroblast activation and tissue fibrosis in SSc. In contrast to fibrosis, evidence for a role of TGFβ in vascular disease of SSc is scarce. Using a transgenic mouse model with fibroblast-specific expression of a kinase-deficient TGFβ receptor type II, Derrett-Smith and colleagues demonstrate that aberrant TGFβ signaling in fibroblasts might result in activation of vascular smooth muscle cells and architectural changes of the vessel wall of the aorta.  相似文献   

4.
5.
6.
High mobility group box 1 (HMGB1), an important inflammatory mediator, is actively secreted by immune cells and some non‐immune cells or passively released by necrotic cells. HMGB1 has been implicated in many inflammatory diseases. Our previous published data demonstrated that HMGB1 was up‐regulated in heart tissue or serum in experimental autoimmune myocarditis (EAM); HMGB1 blockade could ameliorate cardiac fibrosis at the last stage of EAM. And yet, until now, no data directly showed that HMGB1 was associated with cardiac fibrosis. Therefore, the aims of the present work were to assess whether (1) up‐regulated HMGB1 could directly lead to cardiac fibrosis in EAM; (2) cardiac fibroblast/myofibroblasts could secrete HMGB1 as another source of high‐level HMGB1 in EAM; and (3) HMGB1 blockade could effectively prevent cardiac fibrosis at the last stage of EAM. Our results clearly demonstrated that HMGB1 could directly lead to cardiac collagen deposition, which was associated with PKCβ/Erk1/2 signalling pathway; furthermore, cardiac fibroblast/myofibroblasts could actively secrete HMGB1 under external stress; and HMGB1 secreted by cardiac fibroblasts/myofibroblasts led to cardiac fibrosis via PKCβ activation by autocrine means; HMGB1 blockade could efficiently ameliorate cardiac fibrosis in EAM mice.  相似文献   

7.
Telocytes, a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including human skin. Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disease characterized by fibrosis of the skin and internal organs. We presently investigated telocyte distribution and features in the skin of SSc patients compared with normal skin. By an integrated immunohistochemical and transmission electron microscopy approach, we confirmed that telocytes were present in human dermis, where they were mainly recognizable by their typical ultrastructural features and were immunophenotypically characterized by CD34 expression. Our findings also showed that dermal telocytes were immunophenotypically negative for CD31/PECAM‐1 (endothelial cells), α‐SMA (myofibroblasts, pericytes, vascular smooth muscle cells), CD11c (dendritic cells, macrophages), CD90/Thy‐1 (fibroblasts) and c‐kit/CD117 (mast cells). In normal skin, telocytes were organized to form three‐dimensional networks distributed among collagen bundles and elastic fibres, and surrounded microvessels, nerves and skin adnexa (hair follicles, sebaceous and sweat glands). Telocytes displayed severe ultrastructural damages (swollen mitochondria, cytoplasmic vacuolization, lipofuscinic bodies) suggestive of ischaemia‐induced cell degeneration and were progressively lost from the clinically affected skin of SSc patients. Telocyte damage and loss evolved differently according to SSc subsets and stages, being more rapid and severe in diffuse SSc. Briefly, in human skin telocytes are a distinct stromal cell population. In SSc skin, the progressive loss of telocytes might (i) contribute to the altered three‐dimensional organization of the extracellular matrix, (ii) reduce the control of fibroblast, myofibroblast and mast cell activity, and (iii) impair skin regeneration and/or repair.  相似文献   

8.
Systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of the skin and various internal organs. In SSc, telocytes, a peculiar type of stromal (interstitial) cells, display severe ultrastructural damages and are progressively lost from the clinically affected skin. The aim of the present work was to investigate the presence and distribution of telocytes in the internal organs of SSc patients. Archival paraffin‐embedded samples of gastric wall, myocardium and lung from SSc patients and controls were collected. Tissue sections were stained with Masson's trichrome to detect fibrosis. Telocytes were studied on tissue sections subjected to CD34 immunostaining. CD34/CD31 double immunofluorescence was performed to unequivocally differentiate telocytes (CD34‐positive/CD31‐negative) from vascular endothelial cells (CD34‐positive/CD31‐positive). Few telocytes entrapped in the fibrotic extracellular matrix were found in the muscularis mucosae and submucosa of SSc gastric wall. In the muscle layers and myenteric plexus, the network of telocytes was discontinuous or even completely absent around smooth muscle cells and ganglia. Telocytes were almost completely absent in fibrotic areas of SSc myocardium. In SSc fibrotic lung, few or no telocytes were observed in the thickened alveolar septa, around blood vessels and in the interstitial space surrounding terminal and respiratory bronchioles. In SSc, the loss of telocytes is not restricted to the skin, but it is a widespread process affecting multiple organs targeted by the fibrotic process. As telocytes are believed to be key players in the regulation of tissue/organ homoeostasis, our data suggest that telocyte loss might have important pathophysiological implications in SSc.  相似文献   

9.
Our hypothesis is that the development of lesional areas of skin in patients with systemic sclerosis (SSc) originates from the selection of profibrotic cell subpopulations within their non-lesional skin areas, due to their greater resistance to apoptosis. Sensitivity to apoptosis of early-stage or late-stage SSc fibroblasts as well as of healthy cells was compared using extrinsic or intrinsic apoptotic pathway-inducers. Subpopulations of non-lesional SSc cells and healthy cells obtained after repeated Fas-induced apoptosis were compared with respect to their fibrotic parameters such as collagen and MMP secretion. Only late-stage lesional SSc cells were more resistant to Fas-induced apoptosis than their non-lesional counterparts isolated from the same patient. This result correlated with an increase in the levels of the anti-apoptotic proteins cFLIPs and cIAP in lesional cells compared to non-lesional cells. Healthy and non-lesional cell populations could be selected to generate a subpopulation that was more resistant to apoptosis. However, only the late-stage non-lesional SSc fibroblast populations showed a significant decrease in MMP secretion, one of parameters of the fibrosis. Our results show that resistance to apoptosis is an important characteristic of the late-stage lesional SSc fibroblast phenotype. We thus hypothesized that a selection of specific fibroblast subpopulations from late-stage non-lesional SSc skin areas could be at the origin of lesional populations. These cells should become independent of any exogenous stimuli and can induce or maintain SSc skin lesions.  相似文献   

10.
系统性硬皮病是一种累及皮肤和黏膜组织、内脏器官,引起组织纤维化和硬化性的慢性结缔组织病,主要分为局限肢端型和弥漫型,对患者身心健康及生活质量造成严重影响。其病因及发病机制仍在不断研究过程中,较为公认的结论包括CD8+T细胞参与调控成纤维细胞中胶原表达异常与硬皮病的发病相关,其中白介素13介导的CD8+T细胞参与的皮肤纤维化过程得到多方验证。本综述旨在总结和讨论CD8+T细胞在系统性硬皮病皮肤及皮下组织纤维化过程中的角色和作用机制。  相似文献   

11.
微RNA(microRNAs,miRNAs)是在基因编码中起负性调控作用的内源性短链非编码RNA(non-coding RNAs,ncRNAs),是生理和病理过程中基因表达必不可少的转录后调控物。miRNAs占人类基因组的1%~2%,通过与各自的mRNA结合并抑制其翻译,调节大于50%的人类基因及60%的哺乳动物蛋白质编码基因。系统性硬化症(systemic sclerosis,SSc)的发病机制由复杂的miRNAs网络调控。这些miRNAs位于与SSc纤维化相关的基因组区域,通过参与调节重要的细胞信号通路,如TGF-β、Wnt/β-catenin、TLR-4、IL和PDGF-β等,在SSc纤维化过程中发挥作用。同时,还与细胞信号转导、基质修复与重塑、成纤维细胞凋亡、胶原蛋白质合成和细胞外基质(extracellular matrix,ECM)沉积等相关。充分了解miRNAs在SSc纤维化中的重要性,有助于为SSc的诊断提供新的生物标记,为治疗提供新策略。本文综述了miRNAs在SSc纤维化过程中参与调节的这些复杂细胞信号通路的作用及机制,以期为SSc诊断、严重程度判断、预后评估,以及寻求潜在治疗靶点提供新思路。  相似文献   

12.
Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-β is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-β signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-β associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.  相似文献   

13.
IntroductionSystemic sclerosis (SSc) is a complex and not fully understood autoimmune disease associated with fibrosis of multiple organs. The main effector cells, the myofibroblasts, are collagen-producing cells derived from the activation of resting fibroblasts. This process is regulated by a complex repertoire of profibrotic cytokines, and among them transforming growth factor beta (TGF-β) and endothelin-1 (ET-1) play a major role. In this paper we show that TGF-β and ET-1 receptors co-operate in myofibroblast activation, and macitentan, an ET-1 receptor antagonist binding ET-1 receptors, might interfere with both TGF-β and ET-1 pathways, preventing myofibroblast differentiation.MethodsFibroblasts isolated from healthy controls and SSc patients were treated with TGF-β and ET-1 and successively analyzed for alpha smooth muscle actin (α-SMA) and collagen (Col1A1) expression and for the Sma and Mad Related (SMAD) phosphorylation. We further tested the ability of macitentan to interfere with these process. Furthermore, we silenced ET-1 and endothelin-1 receptor A expression and evaluated the formation of an ET-1/TGF-β receptor complex by immunoprecitation assay.ResultsWe showed myofibroblast activation in SSc fibroblasts assessing the expression of α-SMA and Col1A1, after stimulation with TGF-β and ET-1. Macitentan interfered with both ET-1- and TGF-β-induced fibroblast activation. To explain this unexpected inhibitory effect of macitentan on TGF-β activity, we silenced ET-1 expression on SSc fibroblasts and co-immunoprecipitated these two receptors, showing the formation of an ET-1/TGF-β receptor complex.ConclusionsDuring SSc, ET-1 produced by activated endothelia contributes to myofibroblast activation using TGF-β machinery via an ET-1/TGF-β receptor complex. Macitentan interferes with the profibrotic action of TGF-β, blocking the ET-1 receptor portion of the ET-1/TGF-β receptor complex.  相似文献   

14.
Following injury, tissue repair process takes place involving inflammation, granulation tissue formation and scar constitution. Granulation tissue develops from the connective tissue surrounding the damaged area and contains vessels, inflammatory cells, fibroblasts and myofibroblasts. Myofibroblasts play an important role in many tissue injuries and fibrocontractive diseases. The process of normal wound repair after tissue injury follows a closely regulated sequence including the activation and the proliferation of fibroblastic cells. In pathological situations, the normal resolution stages are abrogated and the proliferation of myofibroblasts continues, inducing excessive accumulation of extracellular matrix. The differentiation of fibroblastic cells into myofibroblasts is an early event in the development of tissue fibrosis. Myofibroblastic cells express smooth muscle cytoskeletal markers (alpha-smooth muscle actin in particular) and participate actively in the production of extracellular matrix. The evaluation of myofibroblast differentiation in renal biopsies would be useful for histopathologists to appreciate the intensity of tissue injury and particularly to predict the long term outcome of some nephropathies. Immunohistochemical studies for alpha-smooth muscle actin should be made systematically in renal tissue biopsies. Myofibroblastic differentiation appears to play a significant role in the progression of renal failure and seems to be a useful marker of progressive disease.  相似文献   

15.
The cooperation between epithelial and mesenchymal cells is essential for embryonic development and probably plays an important role in pathological phenomena such as wound healing and tumor progression. It is well known that many epithelial tumors are characterized by the local accumulation of connective tissue cells and extracellular material; this phenomenon has been called the stroma reaction. One of the cellular components of the stroma reaction is the myofibroblast, a modulated fibroblast which has acquired the capacity to neoexpress alpha-smooth muscle actin, the actin isoform typical of vascular smooth muscle cells, and to synthesize important amounts of collagen and other extracellular matrix components. It is now well accepted that the myofibroblast is a key cell for the connective tissue remodeling which takes place during wound healing and fibrosis development. Myofibroblasts are capable of remodeling connective tissue but also interact with epithelial cells and other connective tissue cells and may thus control such phenomena as tumor invasion and angiogenesis. In this review we discuss the mechanisms of myofibroblast evolution during fibrotic and malignant conditions and the interaction of myofibroblasts with other cells in order to control tumor progression. On this basis we suggest that the myofibroblast may represent a new important target of antitumor therapy.  相似文献   

16.
Fibroblasts are critical for tissue homeostasis, and their inappropriate proliferation and activation can result in common and debilitating conditions including fibrosis and cancer. We currently have a poor understanding of the mechanisms that control the growth and activation of fibroblasts in vivo, in part because of a lack of suitable fibroblast markers. We have taken advantage of an antibody previously shown to stain stromal cells in frozen tissues (TE-7) and identified conditions in which it can be used to stain fibroblasts and myofibroblasts in the paraffin-embedded tissue samples routinely collected for pathological analysis. We show that this antibody recognizes growing and quiescent fibroblasts and myofibroblasts by immunohistochemistry, immunofluorescence, and ELISA assays. We also present its staining patterns in normal tissue samples and in breast tumors.  相似文献   

17.
IntroductionSystemic sclerosis (SSc) is a connective tissue disorder characterised by the development of skin fibrosis. Our current understanding of the disease pathogenesis is incomplete and the study of SSc is hindered, at least partially, by a lack of animal models that fully replicate the complex state of human disease. Murine model of bleomycin-induced dermal fibrosis encapsulates important events that take place early in the disease course.MethodsTo characterise the optimum in vivo parameters required for the successful induction of dermal fibrosis we subjected three commonly used mouse strains to repeated subcutaneous bleomycin injections. We aimed to identify the effects of genetic background and gender on the severity of skin fibrosis. We used male and female Balb/C, C57BL/6, and DBA/2 strains and assessed their susceptibility to bleomycin-induced fibrosis by measuring dermal thickness, hydroxyproline/collagen content and number of resident myofibroblasts, all of which are important indicators of the severity of skin fibrosis. All data are expressed as mean values ± SEM. The Mann–Whitney U test was used for statistical analysis with GraphPad Prism 6.04 software.ResultsDermal fibrosis was most severe in Balb/C mice compared to C57BL/6 and DBA/2 suggesting that Balb/C mice are more susceptible to bleomycin-induced fibrosis. Analysis of the effect of gender on the severity of fibrosis showed that male Balb/C, C57BL/6, DBA/2 mice had a tendency to develop more pronounced fibrosis phenotype than female mice. Of potential importance, male Balb/C mice developed the most severe fibrosis phenotype compared to male C57BL/6 and male DBA/2 as indicated by significantly increased number of dermal myofibroblasts.ConclusionOur study highlights the importance of genetic background and gender in the induction of murine dermal fibrosis. Robust and reproducible animal models of fibrosis are important research tools used in pharmacological studies which may lead to better understanding of the pathogenesis of fibrotic diseases and assist in identification of new drugs.  相似文献   

18.
Transforming Growth Factor-beta (TGF-β) is a pro-sclerotic cytokine widely associated with the development of fibrosis in diabetic nephropathy. Central to the underlying pathology of tubulointerstitial fibrosis is epithelial-to-mesenchymal transition (EMT), or the trans-differentiation of tubular epithelial cells into myofibroblasts. This process is accompanied by a number of key morphological and phenotypic changes culminating in detachment of cells from the tubular basement membrane and migration into the interstitium. Ultimately these cells reside as activated myofibroblasts and further exacerbate the state of fibrosis. A large body of evidence supports a role for TGF-β and downstream Smad signalling in the development and progression of renal fibrosis. Here we discuss a role for TGF-β as the principle effector in the development of renal fibrosis in diabetic nephropathy, focusing on the role of the TGF-β1 isoform and its downstream signalling intermediates, the Smad proteins. Specifically we review evidence for TGF-β1 induced EMT in both the proximal and distal regions of the nephron and describe potential therapeutic strategies that may target TGF-β1 activity.  相似文献   

19.
Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young's modulus of the substrate was reduced from ~32 kPa, mimicking pre-calcified diseased tissue, to ~7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA) stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF)) were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in designing hydrogel substrates with physiologically relevant stiffness to dynamically redirect cell fate in vitro.  相似文献   

20.
An important step in many pathological conditions, particularly tissue and organ fibrosis, is the conversion of relatively quiescent cells into active myofibroblasts. These are highly specialized cells that participate in normal wound healing but also contribute to pathogenesis. These cells possess characteristics of smooth muscle cells and fibroblasts, have enhanced synthetic activity secreting abundant extracellular matrix components, cytokines, and growth factors, and are capable of generating contractile force. As such, these cells have become potential therapeutic targets in a number of disease settings. Transforming growth factor β (TGF-β) is a potent stimulus of fibrosis and myofibroblast formation and likewise is an important therapeutic target in several disease conditions. The plant-derived isothiocyanate sulforaphane has been shown to have protective effects in several pathological models including diabetic cardiomyopathy, carcinogenesis, and fibrosis. These studies suggest that sulforaphane may be an attractive preventive agent against disease progression, particularly in conditions involving alterations of the extracellular matrix and activation of myofibroblasts. However, few studies have evaluated the effects of sulforaphane on cardiac fibroblast activation and their interactions with the extracellular matrix. The present studies were carried out to determine the potential effects of sulforaphane on the conversion of quiescent cardiac fibroblasts to an activated myofibroblast phenotype and associated alterations in signaling, expression of extracellular matrix receptors, and cellular physiology following stimulation with TGF-β1. These studies demonstrate that sulforaphane attenuates TGF-β1-induced myofibroblast formation and contractile activity. Sulforaphane also reduces expression of collagen-binding integrins and inhibits canonical and noncanonical TGF-β signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号