首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In vitro endothelial cell organization into capillaries is a long standing challenge of tissue engineering. We recently showed the utility of low level interstitial flow in guiding the organization of endothelial cells through a 3-D fibrin matrix-containing covalently bound vascular endothelial growth factor (VEGF). Here this synergistic phenomenon was extended to explore the effects of matrix composition on in vitro capillary morphogenesis of human blood versus lymphatic endothelial cells (BECs and LECs). Different mixtures of fibrin and collagen were used in conjunction with constant concentrations of matrix-bound VEGF and slow interstitial flow over 10 days. Interestingly, the BECs and LECs each showed a distinct preference in terms of organization for matrix composition: LECs organized the most extensively in a fibrin-only matrix, while BEC organization was optimized in the compliant collagen-containing matrices. Furthermore, the BECs and LECs produced architecturally different structures; while BECs organized in thick, branched networks containing wide lumen, the LECs were elongated into slender, overlapping networks with fine lumen. These data demonstrate the importance of the 3-D matrix composition in facilitating and coordinating BEC and LEC capillary morphogenesis, which is important for in vitro vascularization of engineered tissues.  相似文献   

2.
We developed a microfluidic model of microcirculation containing both blood and lymphatic vessels for examining vascular permeability. The designed microfluidic device harbors upper and lower channels that are partly aligned and are separated by a porous membrane, and on this membrane, blood vascular endothelial cells (BECs) and lymphatic endothelial cells (LECs) were cocultured back-to-back. At cell-cell junctions of both BECs and LECs, claudin-5 and VE-cadherin were detected. The permeability coefficient measured here was lower than the value reported for isolated mammalian venules. Moreover, our results showed that the flow culture established in the device promoted the formation of endothelial cell-cell junctions, and that treatment with histamine, an inflammation-promoting substance, induced changes in the localization of tight and adherens junction-associated proteins and an increase in vascular permeability in the microdevice. These findings indicated that both BECs and LECs appeared to retain their functions in the microfluidic coculture platform. Using this microcirculation device, the vascular damage induced by habu snake venom was successfully assayed, and the assay time was reduced from 24 h to 30 min. This is the first report of a microcirculation model in which BECs and LECs were cocultured. Because the micromodel includes lymphatic vessels in addition to blood vessels, the model can be used to evaluate both vascular permeability and lymphatic return rate.  相似文献   

3.
The important role of the lymphatic vascular system in pathological conditions such as inflammation and cancer has been increasingly recognized, but its potential as a pharmacological target is poorly exploited. Our study aimed at the identification and molecular characterization of lymphatic-specific G protein-coupled receptors (GPCRs) to assess new targets for pharmacological manipulation of the lymphatic vascular system. We used a TaqMan quantitative RT-PCR-based low density array to determine the GPCR expression profiles of ex vivo isolated intestinal mouse lymphatic (LECs) and blood vascular endothelial cells (BECs). GPR97, an orphan adhesion GPCR of unknown function, was the most highly and specifically expressed GPCR in mouse lymphatic endothelium. Using siRNA silencing, we found that GPR97-deficient primary human LECs displayed increased adhesion and collective cell migration, whereas single cell migration was decreased as compared with nontargeting siRNA-transfected control LECs. Loss of GPR97 shifted the ratio of active Cdc42 and RhoA and initiated cytoskeletal rearrangements, including F-actin redistribution, paxillin and PAK4 phosphorylation, and β1-integrin activation. Our data suggest a possible role of GPR97 in lymphatic remodeling and furthermore provide the first insights into the biological functions of GPR97.  相似文献   

4.
5.
Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.  相似文献   

6.
The lymphatic sinuses in human lymph nodes (LNs) are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs). A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs); in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs) in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.  相似文献   

7.
Angiopoietin (Ang)-2, a ligand of the receptor tyrosine kinase Tie2, is known to be involved in the regulation of embryonic lymphangiogenesis. However, the role of Ang-2 in postnatal pathological lymphangiogenesis, such as inflammation, is largely unknown. We used a combination of imaging, molecular, and cellular approaches to investigate whether Ang-2 is involved in inflammatory lymphangiogenesis. We observed strong and continuous expression of Ang-2 on newly generated lymphatic vessels for 2 wk in sutured corneas of BALB/c mice. This expression was concurrent with an increased number of lymphatic vessels. TNF-α expression also increased, with peak TNF-α expression occurring before peak Ang-2 expression was reached. In vitro experiments showed that TNF-α stimulates Ang-2 and Tie2 and ICAM-1 expression on human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BECs). Ang-2 alone did not affect the biological behavior of LECs, whereas Ang-2 combined with TNF-α significantly promoted the proliferation of LECs but not BECs. In mouse models, blockade of Ang-2 with L1-10, an Ang-2-specific inhibitor, significantly inhibited lymphangiogenesis but promoted angiogenesis. These results clearly indicate that Ang-2 acts as a crucial regulator of inflammatory lymphangiogenesis by sensitizing the lymphatic vasculature to inflammatory stimuli, thereby directly promoting lymphangiogenesis. The involvement of Ang-2 in inflammatory lymphangiogenesis provides a strong rationale for the exploitation of anti-Ang-2 treatment in the prevention and treatment of tumor metastasis and transplant rejection.  相似文献   

8.
Human lymphatic endothelial cells (LECs) have isolated prevalently from human derma and tumors. As specialized lymphatic organs within the oropharynx, palatine tonsils are easily obtained and rich in lymphatic venules. Using a two-step purification method based on the sorting of endothelial cells with Ulex Europaeus Agglutinin 1 (UEA-1)-coated beads, followed by purification with monoclonal antibody D2-40, we successfully purified LECs from human palatine tonsils. The LECs were expanded on flasks coated with collagen type 1 and fibronectin for up to 8-10 passages and then analyzed for phenotypic and functional properties. Cultured cells retained the phenotypic pattern of the lymphatic endothelium of palatine tonsils and expressed functional VEGFR-3 molecules. In fact, stimulation with VEGFR-3 ligand, the vascular endothelium grow factor C, induced a marked increase in cell proliferation. Similarly to blood endothelial cells (BECs), LECs were able to form tube-like structure when seeded in Cultrex basement membrane extract. Comparative studies performed on LECs derived from palatine tonsils and iliac lymphatic vessels (ILVs), obtained with the same procedures, showed substantial discrepancies in the expression of various lymphatic markers. This points to the existence of micro- and macrovessel-derived LECs with different phenotypes, possibly involving different biological activities and functions. Palatine tonsil- and ILV-derived LECs may, therefore, represent new models for investigating function and biochemical properties of these lymphatic endothelia.  相似文献   

9.
Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.  相似文献   

10.
高尿酸血症以及痛风的发病率持续升高,已经成为一个重大的公共卫生问题。肠道菌群的结构改变或失调可引起机体代谢紊乱,肠道微生态尤其与代谢性疾病的发生发展关系密切。目前研究发现高尿酸血症、痛风患者存在肠道菌群失调,降尿酸治疗后肠道菌群可发生相应改变,并且益生菌制剂具有降尿酸作用。本文概述高尿酸血症及痛风患者的肠道菌群特点,从高嘌呤及高果糖饮食对肠道菌群的影响、肠道参与嘌呤和尿酸的代谢、代谢性内毒素血症以及痛风相关炎症因子等方面探讨肠道菌群与高尿酸血症及痛风的关系,并展望肠道菌群可能成为未来诊治高尿酸血症以及痛风的一种新方法。  相似文献   

11.
肠道菌群与能量代谢密切相关,其组成和代谢紊乱可通过多种途径导致胰岛素抵抗,肥胖和2型糖尿病。黄连素因具有减重、降糖、调脂等作用被广泛用于肥胖、2型糖尿病及非酒精性脂肪性肝病等代谢性疾病的辅助治疗;研究表明,黄连素可调节肠道菌群的组成和代谢,改善肠道微生态环境,从而改善胰岛素抵抗和代谢。本文综述了黄连素通过肠道菌群-炎症轴在干预代谢性疾病的研究进展,以期为代谢性疾病的治疗寻找新的策略,并为今后该领域的深入研究提供指导意义。  相似文献   

12.
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.  相似文献   

13.
14.
空间环境中的特殊因素会导致航天员肠道菌群及其代谢产物的失调,对机体会产生系统性的生理影响。本文综述了近年来太空飞行/模拟空间环境对肠道菌群及其代谢产物影响的研究进展。太空飞行/模拟空间环境(space flight/simulated space environment,SF/SPE)可导致侵袭性致病菌的增多及有益菌的减少,肠道炎症加剧与通透性增加,也会引起菌群的有益代谢物减少或有害代谢物增加,进而导致机体内代谢的紊乱,或可诱发其他系统的损伤,从而不利于航天员的健康与工作效率。总结太空飞行/模拟空间环境对肠道菌群产生的影响,可为该领域的后续研究与航天员的在轨健康防护提供科学依据。  相似文献   

15.
肥胖以及相关的代谢综合征已经成为全球性的公共健康问题。大量的研究表明,肥胖形成以及减肥过程均与肠道菌群密切相关且相互影响。肠道菌群以及弱炎症反应成为肥胖以及相关代谢综合征的两大重要影响因素。本文综述了近几年来,肠道菌群失调对宿主能量储存以及新陈代谢的影响,以及弱炎症反应对肥胖引起的代谢综合征的影响。大量的研究证明,益生元有助于益生菌的生长,而益生菌可以调节肠道菌群以及改善肠道内弱炎症反应,借助于益生菌以及益生元的方法也许能为由肠道菌群失调以及弱炎症反应引起的肥胖及其代谢综合征提供一种新的治疗方法。  相似文献   

16.
Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.  相似文献   

17.
Lacteals are the entry point of all dietary lipids into the circulation, yet little is known about the active regulation of lipid uptake by these lymphatic vessels, and there lacks in vitro models to study the lacteal—enterocyte interface. We describe an in vitro model of the human intestinal microenvironment containing differentiated Caco‐2 cells and lymphatic endothelial cells (LECs). We characterize the model for fatty acid, lipoprotein, albumin, and dextran transport, and compare to qualitative uptake of fatty acids into lacteals in vivo. We demonstrate relevant morphological features of both cell types and strongly polarized transport of fatty acid in the intestinal‐to‐lymphatic direction. We found much higher transport rates of lipid than of dextran or albumin across the lymphatic endothelial monolayer, suggesting most lipid transport is active and intracellular. This was confirmed with confocal imaging of Bodipy, a fluorescent fatty acid, along with transmission electron microscopy. Since our model recapitulates crucial aspects of the in vivo lymphatic–enterocyte interface, it is useful for studying the biology of lipid transport by lymphatics and as a tool for screening drugs and nanoparticles that target intestinal lymphatics. Biotechnol. Bioeng. 2009;103: 1224–1235. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Resveratrol is a natural polyphenol that has been reported to reduce the risk of obesity and nonalcoholic fatty liver disease (NAFLD). Recent evidence has demonstrated that the gut microbiota plays an important role in the protection against NAFLD and other metabolic diseases. The present study aimed to investigate the relationship between the gut microbiota and the beneficial effects of resveratrol on the amelioration of NAFLD in mice. We observed marked decreases in body weight and liver steatosis and improved insulin resistance in high-fat diet (HFD)-fed mice treated with resveratrol. Furthermore, we found that resveratrol treatment alleviated NAFLD in HFD-fed mice by improving the intestinal microenvironment, including gut barrier function and gut microbiota composition. On the one hand, resveratrol improved gut intestinal barrier integrity through the repair of intestinal mucosal morphology and increased the expression of physical barrier- and physiochemical barrier-related factors in HFD-fed mice. On the other hand, in HFD-fed mice, resveratrol supplementation modulated the gut bacterial composition. The resveratrol-induced gut microbiota was characterized by a decreased abundance of harmful bacteria, including Desulfovibrio, Lachnospiraceae_NK4A316_group and Alistipes, as well as an increased abundance of short-chain fatty acid (SCFA)-producing bacteria, such as Allobaculum, Bacteroides and Blautia. Moreover, transplantation of the HFDR-microbiota into HFD-fed mice sufficiently decreased body weight, liver steatosis and low-grade inflammation and improved hepatic lipid metabolism. Collectively, resveratrol would provide a potentially dietary intervention strategy against NAFLD through modulating the intestinal microenvironment.  相似文献   

19.
Recent evidences have shown that macrophages are tightly related to pathological lymphangiogenesis. However, the effects which primitive macrophages take in embryonic lymphatic development remains unclear. Here, we postulate that the primitive macrophages may play an important role in initial embryonic lymphatic development. The possible mechanism: primitive macrophages induce BECs to transdifferentiate into LECs and initiate the budding, moreover, the lymph sacs are not only formed by LECs but also some scattered cells with macrophage characteristics preferentially located in the loose mesenchyme.  相似文献   

20.
The severity of heat stroke (HS) is associated with intestinal injury, which is generally considered an essential issue for HS. Heat acclimation (HA) is considered the best strategy to protect against HS. In addition, HA has a protective effect on intestinal injuries caused by HS. Considering the essential role of gut microbes in intestinal structure and function, we decided to investigate the potential protective mechanism of HA in reducing intestinal injury caused by HS. HA model was established by male C57BL/6J mice (5–6 weeks old, 17–19 g) were exposed at (34 ± 0.7)°C for 4 weeks to establish an animal HA model. The protective effect of HA on intestinal barrier injury in HS was investigated by 16S rRNA gene sequencing and nontargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. According to the experimental results, HA can change the composition of the gut microbiota, which increases the proportion of lactobacilli, faecal bacteria, and urinobacteria but decreases the proportion of deoxycholic acid. Moreover, HA can reduce liver and kidney injury and systemic inflammation caused by HS and reduce intestinal injury by enhancing the integrity of the intestinal barrier. In addition, HA regulates inflammation by inhibiting NF-κB signalling and increasing tight junction protein expression in HS mice. HA induces changes in the gut microbiota, which may enhance tight junction protein expression, thereby reducing intestinal inflammation, promoting bile acid metabolism, and ultimately maintaining the integrity of the intestinal barrier. In conclusion, HA induced changes in the gut microbiota. Among the gut microbiota, lactobacilli may play a key role in the potential protective mechanism of HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号