首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atherosclerotic CVD is the major cause of death in patients with type 1 diabetes mellitus (T1DM). Alterations in the HDL proteome have been shown to associate with prevalent CVD in T1DM. We therefore sought to determine which proteins carried by HDL might predict incident CVD in patients with T1DM. Using targeted MS/MS, we quantified 50 proteins in HDL from 181 T1DM subjects enrolled in the prospective Coronary Artery Calcification in Type 1 Diabetes study. We used Cox proportional regression analysis and a case-cohort design to test associations of HDL proteins with incident CVD (myocardial infarction, coronary artery bypass grafting, angioplasty, or death from coronary heart disease). We found that only one HDL protein—SFTPB (pulmonary surfactant protein B)—predicted incident CVD in all the models tested. In a fully adjusted model that controlled for lipids and other risk factors, the hazard ratio was 2.17 per SD increase of SFTPB (95% confidence interval, 1.12–4.21, P = 0.022). In addition, plasma fractionation demonstrated that SFTPB is nearly entirely bound to HDL. Although previous studies have shown that high plasma levels of SFTPB associate with prevalent atherosclerosis only in smokers, we found that SFTPB predicted incident CVD in T1DM independently of smoking status and a wide range of confounding factors, including HDL-C, LDL-C, and triglyceride levels. Because SFTPB is almost entirely bound to plasma HDL, our observations support the proposal that SFTPB carried by HDL is a marker—and perhaps mediator—of CVD risk in patients with T1DM.  相似文献   

2.
Plasma levels of HDL cholesterol (HDL-C) have a strong inherited basis with heritability estimates of 40-60%. The well-established inverse relationship between plasma HDL-C levels and the risk of coronary artery disease (CAD) has led to an extensive search for genetic factors influencing HDL-C concentrations. Over the past 30 years, candidate gene, genome-wide linkage, and most recently genome-wide association (GWA) studies have identified several genetic variations for plasma HDL-C levels. However, the functional role of several of these variants remains unknown, and they do not always correlate with CAD. In this review, we will first summarize what is known about HDL metabolism, monogenic disorders associated with both low and high HDL-C levels, and candidate gene studies. Then we will focus this review on recent genetic findings from the GWA studies and future strategies to elucidate the remaining substantial proportion of HDL-C heritability. Comprehensive investigation of the genetic factors conferring to low and high HDL-C levels using integrative approaches is important to unravel novel pathways and their relations to CAD, so that more effective means of diagnosis, treatment, and prevention will be identified.  相似文献   

3.
Low plasma levels of high-density lipoprotein cholesterol (HDL-C) are identified as a risk factor for cardiovascular disease (CVD). Sexual dimorphism, however, is widely reported in both HDL-C and CVD, with the underlying explanations of these sexual differences not fully understood. HDL-C is a complex trait influenced by both genes and dietary factors. Here we examine evidence for a sex-specific effect of APOE and the macronutrient carbohydrate on HDL-C, triglycerides (TG) and apoprotein A-1 (ApoA-1) in a sample of 326 male and 423 female participants of the Strong Heart Family Study (SHFS). Using general estimating equations in SAS to account for kinship correlations, stratifying by sex, and adjusting for age, body mass index (BMI) and SHS center, we examine the relationship between APOE genotype and carbohydrate intake on circulating levels of HDL-C, TG, and ApoA-1 through a series of carbohydrate-by-sex interactions and stratified analyses. APOE-by-carbohydrate intake shows significant sex-specific effects. All males had similar decreases in HDL-C levels associated with increased carbohydrate intake. However, only those females with APOE-4 alleles showed significantly lower HDL-C levels as their percent of carbohydrate intake increased, while no association was noted between carbohydrate intake and HDL-C in those females without an APOE-4 allele. These findings demonstrate the importance of understanding sex differences in gene-by-nutrient interaction when examining the complex architecture of HDL-C variation.  相似文献   

4.
Given the increased prevalence of cardiovascular disease in the world, the search for genetic variations controlling the levels of risk factors associated with the development of the disease continues. Multiple genetic association studies suggest the involvement of procollagen C-proteinase enhancer-2 (PCPE2) in modulating HDL-C levels. Therefore biochemical and mechanistic studies were undertaken to determine whether there might be a basis for a role of PCPE2 in HDL biogenesis. Our studies indicate that PCPE2 accelerates the proteolytic processing of pro-apolipoprotein (apo) AI by enhancing the cleavage of the hexapeptide extension present at the N terminus of apoAI. Surface Plasmon Resonance and immunoprecipitation studies indicate that PCPE2 interacts with BMP-1 and pro-apoAI to form a ternary pro-apoAI/BMP-1/PCPE2 complex. The most favorable interaction among these proteins begins with the association of BMP-1 to pro-apoAI followed by the binding of PCPE2 which further stabilizes the complex. PCPE2 resides, along with apoAI, on the HDL fraction of lipoproteins in human plasma supporting a relationship between HDL and PCPE2. Taken together, the findings from our studies identify a new player in the regulation of apoAI post-translational processing and open a new avenue to the study of mechanisms involved in the regulation of apoAI synthesis, HDL levels, and potentially, cardiovascular disease.  相似文献   

5.
Lower plasma levels of high-density lipoprotein cholesterol (HDL-C) are associated with the metabolic syndrome (insulin resistance, obesity, hypertension) and higher cardiovascular risk. Recent association studies have suggested rare alleles responsible for very low HDL-C levels. However, for individual cardiovascular risk factors, the majority of population-attributable deaths are associated with average rather than extreme levels. Therefore, genetic factors that determine the population variation of HDL-C are particularly relevant. We undertook genome-wide and fine mapping to identify linkage to HDL-C in healthy adult nuclear families from the Victorian Family Heart Study. In 274 adult sibling pairs (average age 24 years, average plasma HDL-C 1.4 mmol/l), genome-wide mapping revealed suggestive evidence for linkage on chromosome 4 (Z score=3.5, 170 cM) and nominal evidence for linkage on chromosomes 1 (Z=2.1, 176 cM) and 6 (Z=2.6, 29 cM). Using genotypes and phenotypes from 932 subjects (233 of the sibling pairs and their parents), finer mapping of the locus on chromosome 4 strengthened our findings with a peak probability (Z score=3.9) at 169 cM. Our linkage data suggest that chromosome 4q32.3 is linked with normal population variation in HDL-C. This region coincides with previous reports of linkage to apolipoprotein AII (a major component of HDL) and encompasses the gene encoding the carboxypeptidase E, relevant to the metabolic syndrome and HDL-C. These findings are relevant for further understanding of the genetic determinants of cardiovascular risk at a population level.  相似文献   

6.
Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional CVD risk factors cannot completely explain the increased risk. Altered HDL proteome is linked with incident CVD in CKD patients, but it is unclear whether other HDL metrics are associated with incident CVD in this population. In the current study, we analyzed samples from two independent prospective case-control cohorts of CKD patients, the Clinical Phenotyping and Resource Biobank Core (CPROBE) and the Chronic Renal Insufficiency Cohort (CRIC). We measured HDL particle sizes and concentrations (HDL-P) by calibrated ion mobility analysis and HDL cholesterol efflux capacity (CEC) by cAMP-stimulated J774 macrophages in 92 subjects from the CPROBE cohort (46 CVD and 46 controls) and in 91 subjects from the CRIC cohort (34 CVD and 57 controls). We tested associations of HDL metrics with incident CVD using logistic regression analysis. No significant associations were found for HDL-C or HDL-CEC in either cohort. Total HDL-P was only negatively associated with incident CVD in the CRIC cohort in unadjusted analysis. Among the six sized HDL subspecies, only medium-sized HDL-P was significantly and negatively associated with incident CVD in both cohorts after adjusting for clinical confounders and lipid risk factors with odds ratios (per 1-SD) of 0.45 (0.22–0.93, P = 0.032) and 0.42 (0.20–0.87, P = 0.019) for CPROBE and CRIC cohorts, respectively. Our observations indicate that medium-sized HDL-P—but not other-sized HDL-P or total HDL-P, HDL-C, or HDL-CEC—may be a prognostic cardiovascular risk marker in CKD.  相似文献   

7.
We assessed association between novel biomarkers of cardiovascular disease and conventional factors in 40 years old subjects (208 men and 266 women) from the general population of Slovakia. FER(HDL) (cholesterol esterification rate in HDL plasma), AIP--Atherogenic Index of Plasma [Log(TG/HDL-C)] as markers of lipoprotein particle size, and CILP2, FTO and MLXIPL polymorphisms, were examined in relation to biomarkers and conventional risk factors. Univariate analyses confirmed correlation between AIP, FER(HDL) and the most of measured parameters. Relations between AIP and CILP2, FTO and MLXIPL were not significant. However, CILP2 was significantly related to FER(HDL) in both genders. In multivariate analysis BMI was the strongest correlate of AIP levels. In multivariate model variability of FER(HDL) was best explained by AIP (R(2) = 0.55) in both genders with still significant effect of CILP2 SNP in men. In a model where AIP was omitted, TG levels explained 43 % of the FER(HDL) variability in men, while in women HDL-C was the major determinant (42 %). In conclusions, FER(HDL) and AIP related to the known markers of cardiovascular risk provide means to express their subtle interactions by one number. Our novel finding of association between CILP2 polymorphism and FER(HDL) supports its role in lipid metabolism.  相似文献   

8.
The recent failures of cholesteryl ester transport protein inhibitor drugs to decrease CVD risk, despite raising HDL cholesterol (HDL-C) levels, suggest that pharmacologic increases in HDL-C may not always reflect elevations in reverse cholesterol transport (RCT), the process by which HDL is believed to exert its beneficial effects. HDL-modulating therapies can affect HDL properties beyond total HDL-C, including particle numbers, size, and composition, and may contribute differently to RCT and CVD risk. The lack of validated easily measurable pharmacodynamic markers to link drug effects to RCT, and ultimately to CVD risk, complicates target and compound selection and evaluation. In this work, we use a systems pharmacology model to contextualize the roles of different HDL targets in cholesterol metabolism and provide quantitative links between HDL-related measurements and the associated changes in RCT rate to support target and compound evaluation in drug development. By quantifying the amount of cholesterol removed from the periphery over the short-term, our simulations show the potential for infused HDL to treat acute CVD. For the primary prevention of CVD, our analysis suggests that the induction of ApoA-I synthesis may be a more viable approach, due to the long-term increase in RCT rate.  相似文献   

9.
10.
Evidence exists that increased levels of physical activity decrease the population burden of cardiovascular disease (CVD). Although risk factors for CVD, including plasma lipids and lipoproteins, have been associated with physical activity, studies including a sizeable number of minority participants are lacking. Our purpose was to interrogate the longitudinal effect of physical activity on plasma lipids and lipoproteins in the African American and white participants of the Atherosclerosis Risk in Communities (ARIC) Study. Nine years of follow-up data on 8,764 individuals aged 45–64 years at baseline were used in linear mixed-effects models to estimate the association between increases in baseline physical activity on mean change in HDL, LDL, total cholesterol, and triglyceride levels. Increases in the level of activity were associated with increases in HDL in all strata and decreases in triglycerides among white participants. Physical activity was associated with LDL in all women, while the association with total cholesterol was limited to African American women. This study is one of the few to investigate the effect of physical activity on lipids and lipoproteins in a race- and sex-specific manner. Overall our results highlight the importance of physical activity on plasma lipid profiles and provide evidence for novel differential associations.  相似文献   

11.

Objectives

To investigate which anthropometric adiposity measure has the strongest association with cardiovascular disease (CVD) risk factors in Caucasian men and women without a history of CVD.

Design

Systematic review and meta-analysis.

Methods

We searched databases for studies reporting correlations between anthropometric adiposity measures and CVD risk factors in Caucasian subjects without a history of CVD. Body mass index (BMI), waist circumference, waist-to-hip ratio, waist-to-height ratio and body fat percentage were considered the anthropometric adiposity measures. Primary CVD risk factors were: systolic blood pressure, diastolic blood pressure, high density lipoprotein (HDL) cholesterol, triglycerides and fasting glucose. Two independent reviewers performed abstract, full text and data selection.

Results

Twenty articles were included describing 21,618 males and 24,139 females. Waist circumference had the strongest correlation with all CVD risk factors for both men and women, except for HDL and LDL in men. When comparing BMI with waist circumference, the latter showed significantly better correlations to CVD risk factors, except for diastolic blood pressure in women and HDL and total cholesterol in men.

Conclusions

We recommend the use of waist circumference in clinical and research studies above other anthropometric adiposity measures, especially compared with BMI, when evaluating CVD risk factors.  相似文献   

12.
Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant’s content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.  相似文献   

13.
Given the increased prevalence of cardiovascular disease in the world, the search for genetic variations that impact risk factors associated with the development of this disease continues. Multiple genetic association studies demonstrate that procollagen C-proteinase enhancer 2 (PCPE2) modulates HDL levels. Recent studies revealed an unexpected role for this protein in the proteolytic processing of pro-apolipoprotein (apo) A-I by enhancing the cleavage of the hexapeptide extension present at the N-terminus of apoA-I. To investigate the role of the PCPE2 protein in an in vivo model, PCPE2-deficient (PCPE2 KO) mice were examined, and a detailed characterization of plasma lipid profiles, apoA-I, HDL speciation, and function was done. Results of isoelectric focusing (IEF) electrophoresis together with the identification of the amino terminal peptides DEPQSQWDK and WHVWQQDEPQSQWDVK, representing mature apoA-I and pro-apoA-I, respectively, in serum from PCPE2 KO mice confirmed that PCPE2 has a role in apoA-I maturation. Lipid profiles showed a marked increase in plasma apoA-I and HDL-cholesterol (HDL-C) levels in PCPE2 KO mice compared with wild-type littermates, regardless of gender or diet. Changes in HDL particle size and electrophoretic mobility observed in PCPE2 KO mice suggest that the presence of pro-apoA-I impairs the maturation of HDL. ABCA1-dependent cholesterol efflux is defective in PCPE2 KO mice, suggesting that the functionality of HDL is altered.  相似文献   

14.
Cardiovascular disease (CVD) is the leading cause of mortality globally. There are few useful markers available for CVD risk stratification that has proven clinical utility. Scavenger receptor B type I (SR-BI) is a cell surface protein that plays a major role in cholesterol homeostasis through its interaction with high-density lipoprotein-cholesterol (HDL-C) esters (CE). HDL delivers CE to the liver through selective uptake by the SR-BI. SR-BI also regulates the inflammatory response. It has been shown that SR-BI overexpression has beneficial, protective effects in atherogenesis, and there is considerable interest in developing antiatherogenic strategies that involve SR-BI-mediated increases in reverse cholesterol transport through HDL and/or low-density lipoprotein. Further investigations are essential to explore the clinical utility of this approach. Moreover, there is growing evidence showing associations between genetic variants with modulation of SR-BI function that may, thereby, increase CVD risk. The aim of the current review was to provide an overview of the possible molecular mechanisms by which SR-BI may affect CVD risk, and the clinical implications of this, with particular emphasis on preclinical studies on genetic changes of SR-BI and CVD risk.  相似文献   

15.

Objective

Objective: Although serum C-peptide has increasingly received attention as a new and important risk factor for cardiovascular disease (CVD), the potential mechanisms remain unclear. This study aimed to investigate the association between serum C-peptide as a risk factor for CVD and high-density lipoprotein cholesterol (HDL-C) levels.

Methods

The present study included 13,185 participants aged ≥20 years. Serum C-peptide and HDL-C levels were measured according to a standard protocol. Stratified analysis of covariance was used to compare serum HDL-C levels between different quartiles of serum C-peptide levels. Logistic regression analysis was used to determine the association between serum C-peptide and HDL-C levels. Cox proportional hazard regression analysis was conducted to determine the hazard ratio of serum HDL-C for CVD-related mortality.

Results

The results of the ANCOVA analysis showed a significant linear trend between the mean serum HDL-C level and the different quartiles of serum C-peptide. Compared to the first quartile (25th percentile), the second, third, and fourth quartiles had gradual reduction in serum HDL-C levels. Logistic regression analyses showed a strong negative association between serum C-peptide levels and HDL-C levels; the p value for the linear trend was <0.001. In men, compared with the lowest quartile of the serum C-peptide level, the relative risk was 1.75, 2.79, and 3.07 for the upper three quartiles of the serum C-peptide level. The relative risk was 1.60, 2.61, and 3.67 for women. The results of the survival analysis showed that serum HDL-C levels were negatively associated with CVD-related death in both men and women.

Conclusion

Serum C-peptide as a risk factor for CVD was significantly and negatively associated with serum HDL-C levels in individuals without diabetes. These findings suggest that serum C-peptide levels association with CVD death can be caused, at least in part, by the low serum HDL-C level.  相似文献   

16.
Cardiovascular disease (CVD) is the leading cause of death worldwide. Recent genome-wide association (GWA) studies have pinpointed many loci associated with CVD risk factors in adults. It is unclear, however, if these loci predict trait levels at all ages, if they are associated with how a trait develops over time, or if they could be used to screen individuals who are pre-symptomatic to provide the opportunity for preventive measures before disease onset. We completed a genome-wide association study on participants in the longitudinal Bogalusa Heart Study (BHS) and have characterized the association between genetic factors and the development of CVD risk factors from childhood to adulthood. We report 7 genome-wide significant associations involving CVD risk factors, two of which have been previously reported. Top regions were tested for replication in the Young Finns Study (YF) and two associations strongly replicated: rs247616 in CETP with HDL levels (combined P = 9.7×10−24), and rs445925 at APOE with LDL levels (combined P = 8.7×10−19). We show that SNPs previously identified in adult cross-sectional studies tend to show age-independent effects in the BHS with effect sizes consistent with previous reports. Previously identified variants were associated with adult trait levels above and beyond those seen in childhood; however, variants with time-dependent effects were also promising predictors. This is the first GWA study to evaluate the role of common genetic variants in the development of CVD risk factors in children as they advance through adulthood and highlights the utility of using longitudinal studies to identify genetic predictors of adult traits in children.  相似文献   

17.
Exogenous androgens can lower HDL-cholesterol (HDL-C) concentrations, yet men with low serum testosterone have elevated rates of cardiovascular disease (CVD). HDL function may better predict CVD risk than absolute HDL-C quantity. We evaluated the acute effects of medical castration in men on HDL-C, cholesterol efflux capacity and HDL protein composition. Twenty-one healthy men, ages 18-55, received the GnRH antagonist acyline and one of the following for 28days: Group 1: placebo, Group 2: transdermal testosterone gel and placebo, Group 3: transdermal testosterone gel and an aromatase inhibitor. Sex steroids, fasting lipids, and cholesterol efflux to apoB-depleted serum were measured in all subjects. The HDL proteome was assessed in Group 1 subjects only. In Group 1, serum testosterone concentrations were reduced by >95%, and HDL-C and cholesterol efflux capacity increased (p=0.02 and p=0.03 vs. baseline, respectively). HDL-associated clusterin increased significantly with sex steroid withdrawal (p=0.007 vs. baseline). Testosterone withdrawal in young, healthy men increases HDL-C and cholesterol efflux capacity. Moreover, sex steroid deprivation changes HDL protein composition. Further investigation of the effects of sex steroids on HDL composition and function may help resolve the apparently conflicting data regarding testosterone, HDL-C, and CVD risk.  相似文献   

18.

Background

Epidemiological studies have shown that low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risk of cardiovascular disease, but the mechanisms for the possible atheroprotective effects of HDL cholesterol have still not been fully clarified, in particular in relation to clinical studies.

Objective

To examine the inflammatory, anti-oxidative and metabolic phenotype of subjects with low plasma HDL cholesterol levels.

Methods and Results

Fifteen subjects with low HDL cholesterol levels (eleven males and four females) and 19 subjects with high HDL (three males and 16 females) were recruited. Low HDL cholesterol was defined as ≤10th age/sex specific percentile and high HDL-C was defined as ≥90 age/sex specific percentile. Inflammatory markers in circulation and PBMC gene expression of cholesterol efflux mediators were measured. Our main findings were: (i) subjects with low plasma HDL cholesterol levels were characterized by increased plasma levels of CRP, MMP-9, neopterin, CXCL16 and ICAM-1 as well as low plasma levels of adiponectin, suggesting an inflammatory phenotype; (ii) these individuals also had reduced paraoxonase (PON)1 activity in plasma and PON2 gene expression in peripheral blood mononuclear cells (PBMC) accompanied by increased plasma levels of oxidized LDL suggesting decreased anti-oxidative capacity; and (iii) PBMC from low HDL subjects also had decreased mRNA levels of ABCA1 and ABCG1, suggesting impaired reverse cholesterol transport.

Conclusion

Subjects with low plasma HDL cholesterol levels are characterized by an inflammatory and oxidative phenotype that could contribute to the increased risk of atherosclerotic disorders in these subjects with low HDL levels.  相似文献   

19.
Lifestyle modification to decrease cardiovascular disease (CVD) risk has recently been reaffirmed by both the National Cholesterol Education Program and American Heart Association (AHA). Using a randomized crossover design, the Therapeutic Lifestyle Change (TLC)/Step 2 diet relative to a typical Western diet was assessed in 36 moderately hypercholesterolemic subjects in a clinical setting under isoweight conditions. Mean lipoprotein and apolipoprotein levels (fasting and non-fasting), fatty acid profiles, parameters of HDL metabolism, and glucose homeostasis were determined. Relative to the Western diet, the TLC/Step 2 diet resulted in 11% and 7% lower LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C), respectively, with no significant change in TG levels or total cholesterol-HDL-C ratio. Similar responses were observed in the non-fasting state. Linoleic (18:2n-6c) and alpha-linolenic (18:3n-3) acids increased at the expense of oleic acid (18:1n-9c) in the cholesteryl ester, TG, and phospholipid subfractions. The dietary changes had no significant effect on fractional esterification rate of HDL, phospholipid transfer protein (PLTP), or cholesterol ester transfer protein activities, or glucose and insulin levels. Female and male subjects responded similarly. The TLC/Step 2 diet resulted in a decrease in some CVD risk factors and no apparent adverse effects in others.  相似文献   

20.
Turks have strikingly low levels of high density lipoprotein cholesterol (HDL-C) (10-15 mg/dL lower than those of Americans or Western Europeans) associated with elevated hepatic lipase mass and activity. Here we report that Turks have low levels of high density lipoprotein subclass 2 (HDL(2)), apoA-I-containing lipoproteins (LpA-I), and pre-beta-1 HDL and increased levels of HDL(3) and LpA-I/A-II particles (potentially an atherogenic lipid profile). The frequency distributions of HDL-C and LpA-I levels were skewed toward bimodality in Turkish women but were unimodal in Turkish men. The apoE genotype affected HDL-C and LpA-I levels in women only. In women, but not men, the varepsilon2 allele was strikingly more prevalent in those with the highest levels of HDL-C and LpA-I than in those with the lowest levels. The higher prevalence of the epsilon2 allele in these subgroups of women was not explained by plasma triglyceride levels, total cholesterol levels, age, or body mass index. The modulating effects of apoE isoforms on lipolytic hydrolysis of HDL by hepatic lipase (apoE2 preventing efficient hydrolysis) or on lipoprotein receptor binding (apoE2 interacting poorly with the low density lipoprotein receptors) may account for differences in HDL-C levels in Turkish women (the epsilon2 allele being associated with higher HDL levels). In Turkish men, who have substantially higher levels of hepatic lipase activity than women, the modulating effect of apoE may be overwhelmed. The gender-specific impact of the apoE genotype on HDL-C and LpA-I levels in association with elevated levels of hepatic lipase provides new insights into the metabolism of HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号