首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.

Background

Cardiomyocyte (CM) cell cycle analysis has been impeded because of a reliance on primary neonatal cultures of poorly proliferating cells or chronic transgenic animal models with innate compensatory mechanisms.

Methodology/Principal Findings

We describe an in vitro model consisting of monolayer cultures of highly proliferative embryonic stem (ES) cell-derived CM. Following induction with ascorbate and selection with puromycin, early CM cultures are >98% pure, and at least 85% of the cells actively proliferate. During the proliferative stage, cells express high levels of E2F3a, B-Myb and phosphorylated forms of retinoblastoma (Rb), but with continued cultivation, cells stop dividing and mature functionally. This developmental transition is characterized by a switch from slow skeletal to cardiac TnI, an increase in binucleation, cardiac calsequestrin and hypophosphorylated Rb, a decrease in E2F3, B-Myb and atrial natriuretic factor, and the establishment of a more negative resting membrane potential. Although previous publications suggested that Rb was not necessary for cell cycle control in heart, we find following acute knockdown of Rb that this factor actively regulates progression through the G1 checkpoint and that its loss promotes proliferation at the expense of CM maturation.

Conclusions/Significance

We have established a unique model system for studying cardiac cell cycle progression, and show in contrast to previous reports that Rb actively regulates both cell cycle progression through the G1 checkpoint and maturation of heart cells. We conclude that this in vitro model will facilitate the analysis of cell cycle control mechanisms of CMs.  相似文献   

6.
7.
8.
9.
10.

Background

LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer.

Methodology/Principal Findings

We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification.

Conclusions/Significance

Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer.  相似文献   

11.
12.

Background

The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, “TAS”) has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways.

Principal Findings

Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms.

Conclusions and Significance

Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.  相似文献   

13.
14.

Purpose

This study investigated the effects of resistance exercise on the Akt-eNOS, the activation of antioxidant protein and FOXO1 in the aorta of F344 rats.

Methods

Male 7 week-old F344 rats were randomly divided into 2 groups: a climbing group (n = 6) and a sedentary group (n = 6). H&E staining and western blotting were used to analyze the rat aortas and target proteins.

Results

Resistance exercise training did not significantly affect aortic structure. Phosphorylation of AKT and eNOS and expression of MnSOD and Ref-1 were significantly increased while FOXO1 phosphorylation was significantly decreased in the resistance exercise group compared with the sedentary group.

Conclusion

We demonstrate that resistance exercise activates the Akt-eNOS and Ref-1 protein without changes to aortic thickness via FOXO-1 activation in the aorta of F344 rats.  相似文献   

15.

Backgroud

RNA interference (RNAi) has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC) therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.

Methods

Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1) was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA) were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3) and non-HCC cell lines (L-02, Hela and SW1116) were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5) was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC) to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.

Results

The AFP-miRNA system could silence target gene (Beclin 1) but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1) in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.

Conclusions

An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA) was successfully established. The system provides a usable tool for HCC-specific RNAi therapy, which may serve as a new treatment modality for HCC.  相似文献   

16.

Background

The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal.

Results

While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing.

Conclusion

These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses.  相似文献   

17.

Background

Urothelial carcinoma shows frequent amplifications at 6p22 and 1q21–24. The main target gene at 6p22 is believed to be E2F3, frequently co-amplified with CDKAL1 and SOX4. There are however reports on 6p22 amplifications that do not include E2F3. Previous analyses have identified frequent aberrations occurring at 1q21–24. However, due to complex rearrangements it has been difficult to identify specific 1q21–24 target regions and genes.

Methods

We selected 29 cases with 6p and 37 cases with 1q focal genomic amplifications from 261 cases of urothelial carcinoma analyzed by array-CGH for high resolution zoom-in oligonucleotide array analyses. Genomic analyses were combined with gene expression data and genomic sequence analyses to characterize and fine map 6p22 and 1q21–24 amplifications.

Results

We show that the most frequently amplified gene at 6p22 is SOX4 and that SOX4 can be amplified and overexpressed without the E2F3 or CDKAL1 genes being included in the amplicon. Hence, our data point to SOX4 as an auxiliary amplification target at 6p22. We further show that at least three amplified regions are observed at 1q21–24. Copy number data, combined with gene expression data, highlighted BCL9 and CHD1L as possible targets in the most proximal region and MCL1, SETDB1, and HIF1B as putative targets in the middle region, whereas no obvious targets could be determined in the most distal amplicon. We highlight enrichment of G4 quadruplex sequence motifs and a high number of intraregional sequence duplications, both known to contribute to genomic instability, as prominent features of the 1q21–24 region.

Conclusions

Our detailed analyses of the 6p22 amplicon suggest SOX4 as an auxiliary target gene for amplification. We further demonstrate three separate target regions for amplification at 1q21–24 and identified BCL9, CHD1L, and MCL1, SETDB1, and HIF1B as putative target genes within these regions.  相似文献   

18.
19.
20.

Background and Aim

Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways.

Methods

Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed.

Results

The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion

MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号