首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Glutathionylcobalamin (GSCbl) is a biologically relevant vitamin B12 derivative and contains glutathione as the upper axial ligand thought formation of a cobalt-sulfur bond. GSCbl has been shown to be an effective precursor of enzyme cofactors, however processing of the cobalamin in intracellular B12 metabolism has not been fully elucidated. In this study, we discovered that bCblC, a bovine B12 trafficking chaperone, catalyzes elimination of the glutathione ligand from GSCbl by using the reduced form of glutathione (GSH). Deglutathionylation products are base-off cob(II)alamin and glutathione disulfide, which are generated stoichiometrically to GSH. Although cob(I)alamin was not detected due to its instability, deglutathionylation is likely analogous to dealkylation of alkylcobalamins, which uses the thiolate of GSH for nucleophilic displacement. The catalytic turnover number for the deglutathionylation of GSCbl is ?1.62 ± 0.13 min−1, which is, at least, an order of magnitude higher than that for elimination of upper axial ligands from other cobalamins. Considering the prevalence of GSH at millimolar concentrations in cells, our results explain the previous finding that GSCbl is more effective than other cobalamins for synthesis of enzyme cofactors.  相似文献   

2.
Intracellular B12 metabolism involves a B12 trafficking chaperone CblC that is well conserved in mammals including human. The protein CblC is known to bind cyanocobalamin (CNCbl, vitamin B12) inducing the base-off transition and convert it into an intermediate that can be used in enzyme cofactor synthesis. The binding affinity of human CblC for CNCbl was determined to be Kd = ≈6–16 μM, which is relatively low considering sub-micromolar B12 concentrations (0.03–0.7 μM) in normal cells. In the current study, we discovered that the base-off transition of CNCbl upon binding to bCblC, a bovine homolog of human CblC, is facilitated in the presence of reduced form of glutathione (GSH). In addition, GSH dramatically increases the binding affinity for CNCbl lowering the Kd from 27.1 ± 0.2–0.24 ± 0.09 μM. The effect of GSH is due to conformational change of bCblC upon binding with GSH, which was indicated by limited proteolysis and urea-induced equilibrium denaturation of the protein. The results of this study suggest that GSH positively modulates bCblC by increasing the binding affinity for CNCbl, which would enhance functional efficiency of the protein.  相似文献   

3.
Lactobacillus helveticus B-1 is assumed to have a vitamin B(12)-targeting (or B(12)-binding) site on the cells, since the binding reaction of vitamin B(12) with L. helveticus B-1 cells proceeded instantly and quantitatively. This reaction is specific to complete B(12) compounds, cobalamins, and can be used for a vitamin B(12) assay method by chemiluminescence. The calibration graph was linear from 0.1 to 10.0 ng/mL. The B(12) contents in oyster and sardine were 75.9 and 39.4 microg/100g, respectively. These values were very close to those obtained using a chemilumi-ADVIA Centaur immunoassay system with intrinsic factor and to those obtained by microbiological assays.  相似文献   

4.
The vitamin B12 requirement of Rhodocyclus purpureus 6770, Rhodospirillum tenue 1/67, and Rhodopseudomonas palustris G 53/2 was determined. A wide variety of biogenetic precursors of the vitamin including cobinamide, cobyric acid, cobinic acid and several partially amidated cobyrinic acids showed growth-promoting activity in all three strains. In R. purpureus vitamin B12 could even be substituted by cobyrinic acid which is the first cobalt-containing precursor of vitamin B12 so far established. Neither methionine, deoxynucleosides, dimethylbenzimidazole nor increased amounts of cobalt could replace vitamin B12 as growth factor.Cupribalamin, which is a strong antimetabolite of vitamin B12 in Escherichia coli 113-3 and Lactobacillus leichmannii ATCC 7830, exhibited only a weak antagonistic effect on growth of R. purpureus and R. tenue. Growth of R. palustris was not inhibited by cupribalamin. The cells of all three strains were shown to contain metal-free corrinoids in addition to cobalt-containing corrinoids. The principal products were identified as 5-deoxyadenosylcobalamin and hydrogenobalamin, the metal free analogue of vitamin B12. The latter does not originate from the vitamin by removal of cobalt but is de novo biosynthesized as could be demonstrated in the case of R. purpureus by a labelling experiment with [13C] methyl-l-methionine.  相似文献   

5.
Cellular uptake of vitamin B(12) (cobalamin, Cbl) is mediated by a receptor expressed on the plasma membrane that binds transcobalamin (TC) saturated with Cbl and internalizes the TC-Cbl by endocytosis. A few reports have described the characterization of the receptor protein. However, many discrepancies have emerged in the functional and structural properties of the receptor and therefore, the identity and primary structure of this protein remains unconfirmed. In this report, we provide evidence of a 58 kDa monomeric protein as the likely receptor for the uptake of TC-Cbl and that the functional activity is not associated with a 72/144 kDa monomer/dimer with immunoglobulin Fc structural domain that has been purported to be the receptor in a number of publications.  相似文献   

6.
The carboxyl-terminal segment of alpha-crystallin, a major lens protein of all vertebrates, has a short and flexible peptide extension of about 20 amino acid residues that are very susceptible to proteolytic truncation and modifications under physiological conditions. To investigate its role in crystallin aggregation and chaperone-like activity, we constructed a mutant of porcine alphaB-crystallin with C-terminal lysine truncated end, which unexpectedly showed better chaperone-like function than wild-type alphaB-crystallin. From circular dichroism (CD) spectra, we show that the mutant possesses similar secondary and tertiary structures to those of native purified and recombinant alphaB-crystallins. Analytical ultracentrifugation revealed that the truncated mutant was smaller than wild-type alphaB-crystallin in aggregation size and mass. The observed higher thermostability and anti-thermal aggregation propensity of the truncated alphaB-crystallin mutant than wild-type alphaB-crystallin are in contrast to the prevailing notion that mutations at the C-terminal lysines of alphaB-crystallin result in substantial loss of chaperone-like activity, despite the overall preservation of secondary structure. The detailed characterization of the C-terminal deletion mutants may provide some deeper insight into the chaperoning mechanism of the structurally related small heat-shock protein family.  相似文献   

7.
Thirteen species of methanogenic bacteria were analyzed for corrinoids. Pseudo vitamin B12 (Co-[-(7-adenyl)]-cobamide) was the predominant cobamide of methanococcales and Methanoplanus. All other methanogens contained factor III (Co-[-(5-hydroxybenzimidazolyl)]-cobamide). Vitamin B12 (Co-[-(5,6-dimethylbenzimidazolyl)]-cobamide) was not detected in any of these archaebacteria. Their cobamide content was 100 to 1400 nmol per gram cell dry weight, indicating that abundant cobamides are essential for methanogens.  相似文献   

8.
Selected residues in a highly conserved 15-residue region, 174SVDTAAMAGLAFTC L188 of human transcobalamin (TC), a cobalamin (Cbl: vitamin B12) binding protein, were subjected to site-directed mutagenesis. The mutant constructs were expressed in TC-deficient fibroblasts or in vitro to assess the effect of these mutations on Cbl binding. Phylogenetic analyses and protein parsimony indicated that TC evolved earlier than other mammalian Cbl-binding proteins, intrinsic factor and haptocorrins, and divergence occurred between mouse/rat and human dispersing TC gene to different chromosomes. These studies show that (a) two of the three polar residues, S174, T177, or D176 and two of the three conserved alanine residues, A179 and A184 present in the 15-residue evolutionary conserved region are essential for Cbl-binding by human TC, and (b) TC gene is transferred in a syntenic manner to different chromosomes, at least before the divergence of mouse/rat and human.  相似文献   

9.
10.
Competitive immunoassay for analysis of vitamin B(12)   总被引:1,自引:0,他引:1  
In the current work, direct competitive enzyme-linked immunosorbent assay (ELISA) was developed for derivatized vitamin B12 by generating chicken egg yolk immunoglobulins (IgY) against derivatized vitamin B12 and purified using affinity chromatography. Checkerboard assay was performed with vitamin B12 antibody and vitamin B12–alkaline phosphatase conjugate followed by its conjugate characterization using ultraviolet (UV) spectroscopy and high-performance liquid chromatography (HPLC). The limit of detection was 10 ng/ml with a linear working range of 10 to 10,000 ng/ml. The affinity constant (Ka) of the vitamin B12 antibody was found to be 4.23 × 108 L/mol. Cross-reactivity with other water-soluble vitamins was found to be less than 0.01% except for analogs of vitamin B12 that showed 12% to 35%. The intra- and interassay coefficients of variation were found to be in the ranges from 0.0005% to 1.2% and 0.009% to 1.03%, respectively. The assay was validated with the HPLC method in terms of sensitivity, specificity, precision, and recovery of vitamin B12 with spiked multivitamin injections, tablets, capsules, and chocolates. The HPLC method had a detection limit of 500 ng/ml with a linear working range of 1000 to 10,000 ng/ml. After extraction of vitamin B12 using Amberlite XAD, the developed ELISA method correlated well with the established HPLC method with a correlation coefficient of 0.90.  相似文献   

11.
Summary Transport of vitamin B12 across the cytoplamic membrane ofEscherichia coli requires the products ofbtuC andbtuD, two genes in thebtuCED operon. The role ofbtuE, the central gene of this operon, was examined. Deletions withinbtuE were constructed by removal of internal restriction fragments and were crossed onto the chromosome by allelic replacement. In-frame deletions that removed 20% or 82% of thebtuE coding region did not affect expression of the distalbtuD gene. These nonpolar deletions had little effect on vitamin B12 binding (whole cells or periplasmic fraction) and transport. They did not affect the utilization of vitamin B12 or other cobalamins for methionine biosynthesis, even in strains with decreased outer membrane transport of vitamin B12. ThebtuE mutations did not impair adenosyl-cobalamin dependent catabolism of ethanolamine or repression ofbtuB expression. Thus, despite its genetic location in the transport operon, thebtuE product plays no essential role in vitamin B12 transport.  相似文献   

12.
Novel vitamin B12 analogues in which the D-ribose moiety of the nucleotide loop was replaced by an oligomethylene group and a trimethylene analogue containing imidazole instead of 5,6-dimethylbenzimidazole as well as cobinamide methyl phosphate were tested for biological activities with Escherichia coli 215, a B12- or methionine-auxotroph, and Lactobacillus leichmannii ATCC 7830 as test organisms. A cyano form of 5,6-dimethylbenzimidazolyl tetramethylene, trimethylene and hexamethylene analogues supported the growth of L. leichmannii in this order. 5.6-Dimethylbenzimidazolyl dimethylene and imidazolyl trimethylene analogues did not show B12 activity and behaved as weak B12 antagonists when added together with cyanocobalamin. An adenosyl form of the biologically active analogues served as coenzymes for ribonucleotide reductase of this bacterium, whereas that of the inactive analogues did not. The latter acted as weak competitive inhibitors against adenosylcobalamin. ON the contrary, all the analogues did not support the growth of E. coli 215 at all by themselves and inhibited the growth when added with a suboptimum level of cyanocobalamin. A methyl form of the analogues also did not support the growth of E. coli 215, although they served as active coenzymes for methionine synthase of the bacterium. Since unlabeled analogues strongly inhibited the uptake of [3H]cyanocobalamin by this bacterium, it seems likely that the analogues exert their anti-B12 activity toward E. coli 215 by blocking the B12-transport systemAbbreviations AdoCbl adenosylcobalamin - MeCbl methylcobalamin - CN-Cbl cyanocobalamin or vitamin B12 - Cbl cobalamin - (CN, aq)Cbi cyanoaquacobinamide - MeCbi methylcobinamide - Cbi cobinamide - (CN, aq)Cbi-PMe cyanoaquacobinamide methyl phosphate - Cbi-PMe cobinamide methyl phosphate - DBI 5,6-dimethylbenzimidazole - DBIyl 5,6-dimethylbenzimidazolyl - FMNH2 fully reduced form of riboflavin 5-phosphate  相似文献   

13.
We previously isolated an analog to chlorophyll-related compounds, pheophytin a, from the marine brown alga Sargassum fulvellum and demonstrated that it is a neurodifferentiation compound. In the current study, we investigated the effects of the pheophytin a analog vitamin B12 on PC12 cell differentiation. In the presence of a low level of nerve growth factor (10 ng ml−1), vitamin B12 demonstrated neurite outgrowth-promoting activity in PC12 cells. The effect was dose-dependent in the range of 6–100 μM. In the absence of nerve growth factor, vitamin B12 did not promote differentiation. To investigate the mechanism for this effect, we conducted differentiation assays and western blot analysis with signal transduction inhibitors and found that vitamin B12 did not promote PC12 cell differentiation in the presence of K252a or U0126 inhibitors. These results suggest that vitamin B12 stimulates PC12 cell differentiation through enhancement of the mitogen-activated protein kinase signal transduction pathway, which is also induced by nerve growth factor. Thus, vitamin B12 may be a good candidate for treatment of neurodegenerative diseases such as Alzheimer’s disease.  相似文献   

14.
Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B12 and carbon dioxide partial pressure (pCO2) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B12-replete conditions, cells grown at high pCO2 had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO2. At high pCO2, B12-limited cells had ∼50% lower specific growth and carbon fixation rates, and used Fe ∼15-fold less efficiently, and Zn and Cd ∼3-fold less efficiently, in comparison with B12-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO2/B12-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B12-replete cells were ∼5- to 14-fold higher in comparison with B12-limited cells, suggesting that >80% of cellular Co of B12-limited cells was likely from B12. Our results demonstrate that CO2 and vitamin B12 interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.  相似文献   

15.
Electrochemically active composite film containing multiwalled carbon nanotubes (MWCNTs) and vitamin B12 was synthesized on glassy carbon, gold, and indium tin oxide electrodes by the potentiodynamic method. The presence of MWCNTs in the composite film (MWCNT–B12) modified electrode mediates vitamin B12’s redox reaction, whereas vitamin B12’s redox reaction does not occur at bare electrode. The electrochemical impedance spectroscopy studies reveal that MWCNTs present in MWCNT–B12 film enhance electron shuttling between the reactant and electrode surface. The surface morphology of bare electrode, MWCNT film. and MWCNT–B12 composite film was studied using atomic force microscopy, which reveals vitamin B12 incorporated with MWCNTs. The MWCNT–B12 composite film exhibits promising enhanced electrocatalysis toward hydrazine. The electrocatalysis response of hydrazine at MWCNT film and MWCNT–B12 composite film was measured using cyclic voltammetry and amperometric current–time (it) curve techniques. The linear concentration range of hydrazine obtained at MWCNT–B12 composite film using the it curve technique is 2.0 μM–1.95 mM. Similarly, the sensitivity of MWCNT–B12 composite film for hydrazine determination using the it curve technique is 1.32 mA mM−1 cm−2, and the hydrazine’s limit of detection at MWCNT–B12 composite film is 0.7 μM.  相似文献   

16.
In order to improve the productivity of vitamin B(12) by Pseudomonas denitrificans carried out in a 120-m(3) fermenter, the effect of pH on vitamin B(12) biosynthesis was investigated. Results obtained from shake flask experiments showed that the feeding of carbon source (beet molasses or glucose) and methyl-group donor (betaine or choline chloride) significantly influenced the pH and the biosynthesis of vitamin B(12). In contrast to beet molasses or choline chloride, using glucose as a feed medium and betaine as a methyl-group donor, pH could be maintained at a stable range. As a result, higher vitamin B(12) production was achieved. Accordingly, an effective and simplified pH-stat control strategy was established for the fermentation of vitamin B(12) in a 120-m(3) industrial fermenter. When the new pH control strategy was applied, pH was stably kept in the range of 7.15-7.30 during fermentation. Thus, 214.3 mug/mL of vitamin B(12) was achieved.  相似文献   

17.
The reported presence of a coenzyme B12-dependent methylmalonyl-CoA mutase in potatoes has been reexamined. The enzyme converting methylmalonyl-CoA was purified to electrophoretic homogeneity. Examination of the reaction product by 1H, 31P NMR and mass spectrometry revealed that it was methylmalonyl-3′-dephospho-CoA. The phosphatase enzyme needs neither coenzyme B12 nor S-adenosylmethionine as a cofactor.  相似文献   

18.
Summary InEuglena gracilis Z, vitamin B12 deficiency arrests cell divisions in S/G 2 phase. After the addition of vitamin B12 to blocked cells, nuclear and cellular divisions begin to be induced between the 3rd and the 4th and between the 4th and the 5th hour respectively; the cell population is doubled after the 11th hour.Addition of cycloheximide either with vitamin B12 or 2 to 6 hours later inhibits the resumption of divisions and blocks cell development in different stages between G 2, karyokinesis and cytokinesis. These results suggest that as a prerequisite protein-dependent steps are required at precise times during the reversibility of blocked cell divisions: at least sequential syntheses of protein concern a) formation of the mitotic spindle and replication of the pellicle; b) completion of the nuclear division; c) progression of the cleavage furrow.  相似文献   

19.
20.

Background

Since 1975 cells lines from patients with suspected inborn errors of vitamin B12 metabolism have been referred to our laboratory because of elevations of homocysteine, methylmalonic acid, or both.

Design

Cultured fibroblasts from patients were subjected to a battery of tests: incorporation of labelled propionate and methyltetrahydrofolate into cellular macromolecules, to test the functional integrity of methylmalonyl-CoA mutase and methionine synthase, respectively; uptake of labelled cyanocobalamin and synthesis of adenosylcobalamin and methylcobalamin; and, where applicable, complementation analysis.

Results

This approach has allowed for the discovery of novel steps in the cellular transport and metabolism of vitamin B12, including those involving cellular uptake, the efflux of vitamin B12 from lysosomes, and the synthesis of adenosylcobalamin and methylcobalamin. For all of these disorders, the responsible genes have been discovered.

Conclusion

The study of highly selected patients with suspected inborn errors of metabolism has consistently resulted in the discovery of previously unknown metabolic steps and has provided new lessons in biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号