首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathionylcobalamin (GSCbl) is a biologically relevant vitamin B12 derivative and contains glutathione as the upper axial ligand thought formation of a cobalt-sulfur bond. GSCbl has been shown to be an effective precursor of enzyme cofactors, however processing of the cobalamin in intracellular B12 metabolism has not been fully elucidated. In this study, we discovered that bCblC, a bovine B12 trafficking chaperone, catalyzes elimination of the glutathione ligand from GSCbl by using the reduced form of glutathione (GSH). Deglutathionylation products are base-off cob(II)alamin and glutathione disulfide, which are generated stoichiometrically to GSH. Although cob(I)alamin was not detected due to its instability, deglutathionylation is likely analogous to dealkylation of alkylcobalamins, which uses the thiolate of GSH for nucleophilic displacement. The catalytic turnover number for the deglutathionylation of GSCbl is ?1.62 ± 0.13 min−1, which is, at least, an order of magnitude higher than that for elimination of upper axial ligands from other cobalamins. Considering the prevalence of GSH at millimolar concentrations in cells, our results explain the previous finding that GSCbl is more effective than other cobalamins for synthesis of enzyme cofactors.  相似文献   

2.
Intracellular B12 metabolism involves a B12 trafficking chaperone CblC that is well conserved in mammals including human. The protein CblC is known to bind cyanocobalamin (CNCbl, vitamin B12) inducing the base-off transition and convert it into an intermediate that can be used in enzyme cofactor synthesis. The binding affinity of human CblC for CNCbl was determined to be Kd = ≈6–16 μM, which is relatively low considering sub-micromolar B12 concentrations (0.03–0.7 μM) in normal cells. In the current study, we discovered that the base-off transition of CNCbl upon binding to bCblC, a bovine homolog of human CblC, is facilitated in the presence of reduced form of glutathione (GSH). In addition, GSH dramatically increases the binding affinity for CNCbl lowering the Kd from 27.1 ± 0.2–0.24 ± 0.09 μM. The effect of GSH is due to conformational change of bCblC upon binding with GSH, which was indicated by limited proteolysis and urea-induced equilibrium denaturation of the protein. The results of this study suggest that GSH positively modulates bCblC by increasing the binding affinity for CNCbl, which would enhance functional efficiency of the protein.  相似文献   

3.
Phytoplankton growth can be limited by numerous inorganic nutrients and organic growth factors. Using the subarctic diatom Attheya sp. in culture studies, we examined how the availability of vitamin B12 and carbon dioxide partial pressure (pCO2) influences growth rate, primary productivity, cellular iron (Fe), cobalt (Co), zinc (Zn) and cadmium (Cd) quotas, and the net use efficiencies (NUEs) of these bioactive trace metals (mol C fixed per mol cellular trace metal per day). Under B12-replete conditions, cells grown at high pCO2 had lower Fe, Zn and Cd quotas, and used those trace metals more efficiently in comparison with cells grown at low pCO2. At high pCO2, B12-limited cells had ∼50% lower specific growth and carbon fixation rates, and used Fe ∼15-fold less efficiently, and Zn and Cd ∼3-fold less efficiently, in comparison with B12-replete cells. The observed higher Fe, Zn and Cd NUE under high pCO2/B12-replete conditions are consistent with predicted downregulation of carbon-concentrating mechanisms. Co quotas of B12-replete cells were ∼5- to 14-fold higher in comparison with B12-limited cells, suggesting that >80% of cellular Co of B12-limited cells was likely from B12. Our results demonstrate that CO2 and vitamin B12 interactively influence growth, carbon fixation, trace metal requirements and trace metal NUE of this diatom. This suggests the need to consider complex feedback interactions between multiple environmental factors for this biogeochemically critical group of phytoplankton in the last glacial maximum as well as the current and future changing ocean.  相似文献   

4.
Mg2+ has been shown to modulate the function of riboswitches by facilitating the ligand-riboswitch interactions. The btuB riboswitch from Escherichia coli undergoes a conformational change upon binding to its ligand, coenzyme B12 (adenosyl-cobalamine, AdoCbl), and down-regulates the expression of the B12 transporter protein BtuB in order to control the cellular levels of AdoCbl. Here, we discuss the structural folding attained by the btuB riboswitch from E. coli in response to Mg2+ and how it affects the ligand binding competent conformation of the RNA. The btuB riboswitch notably adopts different conformational states depending upon the concentration of Mg2+. With the help of in-line probing, we show the existence of at least two specific conformations, one being achieved in the complete absence of Mg2+ (or low Mg2+ concentration) and the other appearing above ∼0.5 mM Mg2+. Distinct regions of the riboswitch exhibit different dissociation constants toward Mg2+, indicating a stepwise folding of the btuB RNA. Increasing the Mg2+ concentration drives the transition from one conformation toward the other. The conformational state existing above 0.5 mM Mg2+ defines the binding competent conformation of the btuB riboswitch which can productively interact with the ligand, coenzyme B12, and switch the RNA conformation. Moreover, raising the Mg2+ concentration enhances the ratio of switched RNA in the presence of AdoCbl. The lack of a AdoCbl-induced conformational switch experienced by the btuB riboswitch in the absence of Mg2+ indicates a crucial role played by Mg2+ for defining an active conformation of the riboswitch.  相似文献   

5.
Lateral ribosomal stalk is responsible for binding and recruiting translation factors during protein synthesis. The eukaryotic stalk consists of one P0 protein with two copies of P1•P2 heterodimers to form a P0(P1•P2)2 pentameric P-complex. Here, we have solved the structure of full-length P1•P2 by nuclear magnetic resonance spectroscopy. P1 and P2 dimerize via their helical N-terminal domains, whereas the C-terminal tails of P1•P2 are unstructured and can extend up to ∼125 Å away from the dimerization domains. 15N relaxation study reveals that the C-terminal tails are flexible, having a much faster internal mobility than the N-terminal domains. Replacement of prokaryotic L10(L7/L12)4/L11 by eukaryotic P0(P1•P2)2/eL12 rendered Escherichia coli ribosome, which is insensitive to trichosanthin (TCS), susceptible to depurination by TCS and the C-terminal tail was found to be responsible for this depurination. Truncation and insertion studies showed that depurination of hybrid ribosome is dependent on the length of the proline-alanine rich hinge region within the C-terminal tail. All together, we propose a model that recruitment of TCS to the sarcin-ricin loop required the flexible C-terminal tail, and the proline-alanine rich hinge region lengthens this C-terminal tail, allowing the tail to sweep around the ribosome to recruit TCS.  相似文献   

6.
Maintenance of adequate levels of glutathione (GSH) in the lens nucleus is critical for protection of lens proteins from the effects of oxidative stress and for lens transparency. How GSH is transported to the nucleus is unknown. We show that GSH diffuses to the nucleus from the outer cortex, where a high concentration of the anti-oxidant is established by synthesis or uptake, via the network of gap junctions. Using electrophysiological measurements, we found that channels formed by Cx46 and Cx50, the two connexin isoforms expressed in the lens, were moderately cation-selective (PNa/PCl ∼5 for Cx46 and ∼3 for Cx50). Single channel permeation of the larger GSH anion was low but detectable (PNa/PGSH ∼12 for Cx46 and ∼8 for Cx50), whereas permeation of divalent anion glutathione disulfide (GSSG) was undetectable. Measurement of GSH levels in the lenses from connexin knock-out (KO) mice indicated Cx46, and not Cx50, is necessary for transport of GSH to the core. Levels of GSH in the nucleus were markedly reduced in Cx46 KO, whereas they were unaffected by Cx50 KO. We also show that GSH delivery to the nucleus is not dependent on the lens microcirculation, which is believed to be responsible for extracellular transport of other nutrients to membrane transporters in the core. These results indicate that glutathione diffuses from cortical fiber cells to the nucleus via gap junction channels formed by Cx46. We present a model of GSH diffusion from outer cells to inner fiber cells through gap junctions.  相似文献   

7.
Single-channel and [3H]ryanodine binding experiments were carried out to examine the effects of imperatoxin activator (IpTxa), a 33 amino acid peptide isolated from the venom of the African scorpion Pandinus imperator, on rabbit skeletal and canine cardiac muscle Ca2+ release channels (CRCs). Single channel currents from purified CRCs incorporated into planar lipid bilayers were recorded in 250 mM KCl media. Addition of IpTxa in nanomolar concentration to the cytosolic (cis) side, but not to the lumenal (trans) side, induced substates in both ryanodine receptor isoforms. The substates displayed a slightly rectifying current–voltage relationship. The chord conductance at −40 mV was ∼43% of the full conductance, whereas it was ∼28% at a holding potential of +40 mV. The substate formation by IpTxa was voltage and concentration dependent. Analysis of voltage and concentration dependence and kinetics of substate formation suggested that IpTxa reversibly binds to the CRC at a single site in the voltage drop across the channel. The rate constant for IpTxa binding to the skeletal muscle CRC increased e-fold per +53 mV and the rate constant of dissociation decreased e-fold per +25 mV applied holding potential. The effective valence of the reaction leading to the substate was ∼1.5. The IpTxa binding site was calculated to be located at ∼23% of the voltage drop from the cytosolic side. IpTxa induced substates in the ryanodine-modified skeletal CRC and increased or reduced [3H]ryanodine binding to sarcoplasmic reticulum vesicles depending on the level of channel activation. These results suggest that IpTxa induces subconductance states in skeletal and cardiac muscle Ca2+ release channels by binding to a single, cytosolically accessible site different from the ryanodine binding site.  相似文献   

8.
In this study, we evaluated the effects of dietary intake of vitamin B12 and folate during pregnancy and their interactions with maternal polymorphism of MTHFR (677C>T; 1298A>C) on intrauterine development. Anthropometric parameters were obtained from 231 newborns that belong to a prospective birth cohort in Morelos, Mexico. Maternal dietary intake of vitamin B12 and folate was assessed using a semi-quantitative questionnaire administered during the first and third trimesters of the pregnancy. Maternal MTHFR 677C>T and 1298 A>C genotypes were determined by PCR–RFLP. The associations between deficient dietary intake of vitamin B12 (<2.0 μg/d) and folate (<400 μg/d) in the first and third trimesters and maternal polymorphisms of MTHFR on anthropometric parameters at birth were estimated using a multivariate linear regression model. During pregnancy, the deficient dietary intake was roughly 60 % for folate and 19 % for vitamin B12. Allelic frequencies of 677T and 1298C were 59 and 10 %, respectively. After adjusting for confounders, deficiency in maternal dietary intake of vitamin B12 (<2.0 μg/d) was associated with a significant reduction in length (β ~ −2.4; 95 % CI −4.3; −0.6) and length-for-age at birth (β ~ −1.2; 95 % CI −2.3; −0.1) among infants whose mothers were carriers of the 677TT genotype (p for interaction = 0.02). In contrast, no association was observed between deficiency in maternal dietary intake of folate (<400 μg/d) and any anthropometric parameter of newborns. These results suggest that supplementation with vitamin B12 during pregnancy could have a favorable impact on intrauterine fetal development mainly in populations that are genetically susceptible.  相似文献   

9.
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector.Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.  相似文献   

10.
Transposable elements (TEs) are major components of plant genome and are reported to play significant roles in functional genome diversity and phenotypic variations. Several TEs are highly polymorphic for insert location in the genome and this facilitates development of TE-based markers for various genotyping purposes. Considering this, a genome-wide analysis was performed in the model plant foxtail millet. A total of 30,706 TEs were identified and classified as DNA transposons (24,386), full-length Copia type (1,038), partial or solo Copia type (10,118), full-length Gypsy type (1,570), partial or solo Gypsy type (23,293) and Long- and Short-Interspersed Nuclear Elements (3,659 and 53, respectively). Further, 20,278 TE-based markers were developed, namely Retrotransposon-Based Insertion Polymorphisms (4,801, ∼24%), Inter-Retrotransposon Amplified Polymorphisms (3,239, ∼16%), Repeat Junction Markers (4,451, ∼22%), Repeat Junction-Junction Markers (329, ∼2%), Insertion-Site-Based Polymorphisms (7,401, ∼36%) and Retrotransposon-Microsatellite Amplified Polymorphisms (57, 0.2%). A total of 134 Repeat Junction Markers were screened in 96 accessions of Setaria italica and 3 wild Setaria accessions of which 30 showed polymorphism. Moreover, an open access database for these developed resources was constructed (Foxtail millet Transposable Elements-based Marker Database; http://59.163.192.83/ltrdb/index.html). Taken together, this study would serve as a valuable resource for large-scale genotyping applications in foxtail millet and related grass species.  相似文献   

11.
Cystathionine β-synthase (CBS) is a key enzyme in human (patho)physiology with a central role in hydrogen sulfide metabolism. The enzyme is composed of a pyridoxal 5′-phosphate-binding catalytic domain, flanked by the following two domains: a heme-binding N-terminal domain and a regulatory C-terminal domain binding S-adenosyl-l-methionine (AdoMet). CO or NO binding at the ferrous heme negatively modulates the enzyme activity. Conversely, AdoMet binding stimulates CBS activity. Here, we provide experimental evidence for a functional communication between the two domains. We report that AdoMet binding significantly enhances CBS inhibition by CO. Consistently, we observed increased affinity (∼5-fold) and faster association (∼10-fold) of CO to the ferrous heme at physiological AdoMet concentrations. NO binding to reduced CBS was also enhanced by AdoMet, although to a lesser extent (∼2-fold higher affinity) as compared with CO. Importantly, CO and NO binding was unchanged by AdoMet in a truncated form of CBS lacking the C-terminal regulatory domain. These unprecedented observations demonstrate that CBS activation by AdoMet puzzlingly sensitizes the enzyme toward inhibition by exogenous ligands, like CO and NO. This further supports the notion that CBS regulation is a complex process, involving the concerted action of multiple physiologically relevant effectors.  相似文献   

12.
Single-channel properties of the Xenopus inositol trisphosphate receptor (IP3R) ion channel were examined by patch clamp electrophysiology of the outer nuclear membrane of isolated oocyte nuclei. With 140 mM K+ as the charge carrier (cytoplasmic [IP3] = 10 μM, free [Ca2+] = 200 nM), the IP3R exhibited four and possibly five conductance states. The conductance of the most-frequently observed state M was 113 pS around 0 mV and ∼300 pS at 60 mV. The channel was frequently observed with high open probability (mean P o = 0.4 at 20 mV). Dwell time distribution analysis revealed at least two kinetic states of M with time constants τ < 5 ms and ∼20 ms; and at least three closed states with τ ∼1 ms, ∼10 ms, and >1 s. Higher cytoplasmic potential increased the relative frequency and τ of the longest closed state. A novel “flicker” kinetic mode was observed, in which the channel alternated rapidly between two new conductance states: F1 and F2. The relative occupation probability of the flicker states exhibited voltage dependence described by a Boltzmann distribution corresponding to 1.33 electron charges moving across the entire electric field during F1 to F2 transitions. Channel run-down or inactivation (τ ∼ 30 s) was consistently observed in the continuous presence of IP3 and the absence of change in [Ca2+]. Some (∼10%) channel disappearances could be reversed by an increase in voltage before irreversible inactivation. A model for voltage-dependent channel gating is proposed in which one mechanism controls channel opening in both the normal and flicker modes, whereas a separate independent mechanism generates flicker activity and voltage- reversible inactivation. Mapping of functional channels indicates that the IP3R tends to aggregate into microscopic (<1 μm) as well as macroscopic (∼10 μm) clusters. Ca2+-independent inactivation of IP3R and channel clustering may contribute to complex [Ca2+] signals in cells.  相似文献   

13.
We studied the effect of intracellular glutathione (GSH), which was known to conjugate readily with an α, β-unsaturated carbonyl of 9-deoxy-Δ9,12-13,14-dihydro PGD212-PGJ2), on the cytotoxicity of Δ12-PGJ2. Δ12-PGJ2 caused DNA fragmentation in human hepatocellular carcinoma Hep 3B cells, which was blocked by cycloheximide (CHX). The Δ12-PGJ2-induced apoptosis was augmented by GSH depletion resulted from pretreatment with buthioninine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase. On the contrary, N-acetyl-cysteine (NAC), a precursor of cysteine, elevated the GSH level and protected cells from initiating apoptosis by Δ12-PGJ2. Sodium arsenite, a thiol-reactive agent, also induced apoptosis, which was potentiated or attenuated by BSO or NAC treatment respectively. These results suggest that the apoptosis-inducing activity of Δ12-PGJ2 is due to thiol-reactivity and intracellular GSH modulates the Δ12-PGJ2-induced apoptosis by regulating the accessibility of Δ12-PGJ2 to target proteins containing thiol groups.  相似文献   

14.
People with Rett syndrome and mouse models show autonomic dysfunction involving the brain stem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly excited, likely resulting from a defect in neuronal intrinsic membrane properties and a deficiency in GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA receptors (GABAARs) that is located extrasynaptically and mediates tonic inhibition. Here we show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked by GABAAR antagonists. With 10 μm GABA, the bicuculline-sensitive tonic currents were ∼4-fold larger in Mecp2-null LC neurons than in the WT. Single-cell PCR analysis showed that the δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. Expression levels of the δ subunit were ∼50% higher in Mecp2-null neurons than in the WT. Also increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit, α6, by ∼4-fold. The δ subunit-selective agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]]benzamide activated the tonic GABAA currents in LC neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. Consistent with these findings, in vivo application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride alleviated breathing abnormalities of conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in GABAergic synaptic inhibition and allows control of neuronal excitability and breathing abnormalities.  相似文献   

15.
Observational studies have consistently shown associations between mild deficiencies in folate and vitamin B12 with increased risk of a myriad of common diseases. These findings have invariably translated into null outcomes in intervention trials due in part to our ignorance of the specific genomic and environmental factors that underpin population variability in requirements to these B-vitamins. Although genome-wide association studies have shed initial light on the genetic architecture of variability in status of these vitamins, particularly vitamin B12, the causal mechanisms remain uncharacterised. A recent study by Grarup et al. (PLoS Genet 9(6):e1003530, 2013) used next-generation whole-genome sequencing to gain further insight into the genetic architecture of vitamin B12 and folate status in the general population. Their study represents the analysis of approximately ten times greater number of genetic variants and nearly four times the number of individuals compared to the largest previous GWAS study of these B-vitamins. In light of this, we purport that although the study may be viewed as the state of the art in the roadmap to personalised or precision nutrition, the lack of insight provided by the study serves as a cautionary reminder of the importance of study design, particularly when leveraging large-scale data, such as those from whole-genome sequences. We believe that the precedent set by such large-scale “proof of principle” type projects will wrongly enforce a negative outlook for nutrigenomics research and present alternative study designs, which although less opportunistic are far more likely to be informative and yield novel results.  相似文献   

16.
Wild common bean (Phaseolus vulgaris L.) is distributed throughout the Americas from Mexico to northern Argentina. Within this range, the species is divided into two gene pools (Andean and Middle American) along a latitudinal gradient. The diversity of 24 wild common bean genotypes from throughout the geographic range of the species was described by using sequence data from 13 loci. An isolation–migration model was evaluated using a coalescent analysis to estimate multiple demographic parameters. Using a Bayesian approach, Andean and Middle American subpopulations with high percentage of parentages were observed. Over all loci, the Middle American gene pool was more diverse than the Andean gene pool (πsil=0.0089 vs 0.0068). The two subpopulations were strongly genetically differentiated over all loci (Fst=0.29). It is estimated that the two current wild gene pools diverged from a common ancestor ∼111 000 years ago. Subsequently, each gene pool underwent a bottleneck immediately after divergence and lasted ∼40 000 years. The Middle American bottleneck population size was ∼46% of the ancestral population size, whereas the Andean was 26%. Continuous asymmetric gene flow was detected between the two gene pools with a larger number of migrants entering Middle American gene pool from the Andean gene pool. These results suggest that because of the complex population structure associated with the ancestral divergence, subsequent bottlenecks in each gene pool, gene pool-specific domestication and intense selection within each gene pool by breeders; association mapping would best be practised within each common bean gene pool.  相似文献   

17.
Increased ligand binding to integrin (“activation”) underpins many biological processes, such as leukocyte trafficking, cell migration, host-pathogen interaction, and hemostasis. Integrins exist in several conformations, ranging from compact and bent to extended and open. However, the exact conformation of membrane-embedded, full-length integrin bound to its physiological macromolecular ligand is still unclear. Integrin αIIbβ3, the most abundant integrin in platelets, has been a prototype for integrin activation studies. Using negative stain electron microscopy and nanodisc-embedding to provide a membrane-like environment, we visualized the conformation of full-length αIIbβ3 in both a Mn2+-activated, ligand-free state and a Mn2+-activated, fibrin-bound state. Activated but ligand-free integrins exist mainly in the compact conformation, whereas fibrin-bound αIIbβ3 predominantly exists in a fully extended, headpiece open conformation. Our results show that membrane-embedded, full-length integrin adopts an extended and open conformation when bound to its physiological macromolecular ligand.  相似文献   

18.
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ70 holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号