首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Colorectal cancer (CRC) is a major cause of morbidity and mortality in the United States. Tumor-stromal metabolic crosstalk in the tumor microenvironment promotes CRC development and progression, but exactly how stromal cells, in particular cancer-associated fibroblasts (CAFs), affect the metabolism of tumor cells remains unknown. Here we take a data-driven approach to investigate the metabolic interactions between CRC cells and CAFs, integrating constraint-based modeling and metabolomic profiling. Using metabolomics data, we perform unsteady-state parsimonious flux balance analysis to infer flux distributions for central carbon metabolism in CRC cells treated with or without CAF-conditioned media. We find that CAFs reprogram CRC metabolism through stimulation of glycolysis, the oxidative arm of the pentose phosphate pathway (PPP), and glutaminolysis, as well as inhibition of the tricarboxylic acid cycle. To identify potential therapeutic targets, we simulate enzyme knockouts and find that CAF-treated CRC cells are especially sensitive to inhibitions of hexokinase and glucose-6-phosphate, the rate limiting steps of glycolysis and oxidative PPP. Our work gives mechanistic insights into the metabolic interactions between CRC cells and CAFs and provides a framework for testing hypotheses towards CRC-targeted therapies.  相似文献   

3.
Polyploidization is a process present in cells of many different human tissues. Since it is also prominent in human wound healing in vivo and in vitro, we focused on the influence of hypoxia on the cells proliferation and polyploidization response. The proliferation response of two major cell types, involved in human wound healing, human dermal microvascular endothelial cells (HDMEC) and normal human dermal fibroblasts (NHDF) was quite similar in the in vitro setup: proliferation significantly decreased under the influence of 18 h of hypoxia and was reinitiated after 72 h of reoxygenation. The cells response concerning their tendency towards the development of polyploidy was different: NHDF did not generate any polyploid cells, which stands in contrast to former in vitro studies with human wound-derived fibroblasts, but HDMEC were characterized by the presence of both mononuclear and binuclear tetraploid cells. The number of tetraploids was downregulated during hypoxia and increased during reoxygenation, accompanied by proliferation onset. The immunomicroscopic survey of HDMEC opened up a cell cycle model, which might be useful in the future to evaluate cell cycle modulations leading to polyploidy without the need to apply any additional cell cycle inhibitors.  相似文献   

4.
目的:研究应用缺氧对体外培养的大鼠神经干细胞增殖的影响。方法:将细胞分为4小时缺氧组、12小时缺氧组、促红细胞生成素(EPO)中和抗体组、IgG组以及对照组.测定大鼠神经干细胞经缺氧培养后的各组细胞克隆形成率以及EPO的表达变化。结果:单细胞培养条件下,与对照组相比,4小时缺氧组和IgG组克隆形成率明显增高;中和抗体组无明显变化;12小时组克隆形成率降低。但无统计学意义。缺氧4小时后,EPO蛋白在预处理后即刻出现表迭,4h达高峰,8h仍有部分表达。结论:短时间缺氧可以促进神经干细胞增殖.长时间缺氧则作用相反。缺氧对NSCs增殖作用的影响可能是由EPO介导产生。  相似文献   

5.
Hypoxia favored the preservation of progenitor characteristics of hematopoietic stem and progenitor cells (HSPCs) in bone marrow. This work aimed at studying the role of reactive oxygen species (ROS)-generating NADPH oxidase system regulated by hypoxia in ex vivo cultures of cord blood CD34+ cells. The results showed that NADPH oxidase activity and ROS generation were reduced in hypoxia with respect to normal oxygen tension. Meanwhile the ROS generation was found to be inhibited by diphenyleneiodonium (the NADPH oxidase inhibitor), or N-acetylcysteine (the ROS scavenger). Accordingly NADPH oxidase mRNA and p67 protein levels decreased in hypoxia. The analysis of progenitor characteristics, including the proportion of cultured cells expressing the HSPCs marker CD34+CD38, colony production ability of the colony-forming cells (CFCs), and the re-expansion capability of the cultured CD34+ cells, showed that either 5% pO2 or reduced ROS favored preserving the characteristics of CD34+ progenitors, and promoted the expansion of CD34+CD38 cells as well. The above results demonstrated that hypoxia effectively maintained biological characteristics of CD34+ cells through keeping lower intracellular ROS levels by regulating NADPH oxidase.  相似文献   

6.
目的探索miR-138-5p对胰腺癌细胞PANC-1生长、转移的影响及其相关机制。方法应用荧光实时定量PCR (real-time quantitative PCR, RT-PCR)检测miR-138-5p及其缺氧诱导因子1α(hypoxia inducible factor 1 alpha, HIF-1α)在PANC-1细胞中的表达。应用荧光素酶报告检测验证miR-138-5p与HIF-1α之间的生物学关系。通过体外试验研究miR-138-5p、HIF-1α在PANC-1细胞中的生物学功能,Western blot检测蛋白表达情况;CCK-8检测PANC-1细胞增殖能力;Transwell试验检测PANC-1细胞侵袭能力;划痕试验检测PANC-1细胞迁移能力。结果 miR-138-5p表达明显下调HIF-1α表达水平(P<0.01),生物信息学预测和荧光素酶报告试验证明miR-138-5p通过直接结合HIF-1α 3′-未翻译区域(3′-UTR)抑制HIF-1α。在PANC-1细胞中,miR-138-5p过表达可抑制HIF-1α表达及细胞增殖、侵袭、迁移,且差异有统计学意义(P<0.01)。结论 miR-138-5p结合HIF-1α 3′-UTR的沉默HIF-1α;miR-138-5p通过打靶HIF-1α而抑制胰腺癌细胞PANC-1增殖和转移。HIF-1α可能是胰腺癌的治疗靶点。  相似文献   

7.
8.
Breast cancers vary by their origin and specific set of genetic lesions, which gives rise to distinct phenotypes and differential response to targeted and untargeted chemotherapies. To explore the functional differences of different breast cell types, we performed Stable Isotope Resolved Metabolomics (SIRM) studies of one primary breast (HMEC) and three breast cancer cells (MCF-7, MDAMB-231, and ZR75-1) having distinct genotypes and growth characteristics, using 13C6-glucose, 13C-1+2-glucose, 13C5,15N2-Gln, 13C3-glycerol, and 13C8-octanoate as tracers. These tracers were designed to probe the central energy producing and anabolic pathways (glycolysis, pentose phosphate pathway, Krebs Cycle, glutaminolysis, nucleotide synthesis and lipid turnover). We found that glycolysis was not associated with the rate of breast cancer cell proliferation, glutaminolysis did not support lipid synthesis in primary breast or breast cancer cells, but was a major contributor to pyrimidine ring synthesis in all cell types; anaplerotic pyruvate carboxylation was activated in breast cancer versus primary cells. We also found that glucose metabolism in individual breast cancer cell lines differed between in vitro cultures and tumor xenografts, but not the metabolic distinctions between cell lines, which may reflect the influence of tumor architecture/microenvironment.  相似文献   

9.
10.
Pseudomonas aeruginosa is a gram-negative pathogen, which causes life-threatening infections in immunocompromized patients. These bacteria express a secreted lipoxygenase (PA-LOX), which oxygenates free arachidonic acid to 15S-hydro(pero)xyeicosatetraenoic acid. It binds phospholipids at its active site and physically interacts with lipid vesicles. When incubated with red blood cells membrane lipids are oxidized and hemolysis is induced but the structures of the oxygenated membrane lipids have not been determined. Using a lipidomic approach, we analyzed the formation of oxidized phospholipids generated during the in vitro incubation of recombinant PA-LOX with human erythrocytes and cultured human lung epithelial cells. Precursor scanning of lipid extracts prepared from these cells followed by multiple reaction monitoring and MS/MS analysis revealed a complex mixture of oxidation products. For human red blood cells this mixture comprised forty different phosphatidylethanolamine and phosphatidylcholine species carrying oxidized fatty acid residues, such as hydroxy-octadecadienoic acids, hydroxy- and keto-eicosatetraenoic acid, hydroxy-docosahexaenoic acid as well as oxygenated derivatives of less frequently occurring polyenoic fatty acids. Similar oxygenation products were also detected when cultured lung epithelial cells were employed but here the amounts of oxygenated lipids were smaller and under identical experimental conditions we did not detect major signs of cell lysis. However, live imaging indicated an impaired capacity for trypan blue exclusion and an augmented mitosis rate. Taken together these data indicate that PA-LOX can oxidize the membrane lipids of eukaryotic cells and that the functional consequences of this reaction strongly depend on the cell type.  相似文献   

11.
12.
将Wistar大鼠暴露于3 780 m低氧环境,分别于24 h、2 wk及3 wk后采用酶联免疫法和硝酸还原酶法测定血液中的ET~(-1)和NO的含量,计算NO/ET~(-1)值,并与高原鼠兔比较,探讨低氧条件下大鼠与高原鼠兔血液中NO与ET~(-1)含量的变化趋势。结果表明,低氧24 h后,大鼠血液中NO和ET~(-1)的含量显著高于同海拔的高原鼠兔(P<0·01),而NO/ET~(-1)值无显著差异(P>0·05)。随着大鼠在高海拔停留时间的延长,血液中NO含量呈减少趋势,而ET~(-1)则有上升趋势,二者呈显著的负相关(r2=0·2416,P<0·01)。高原鼠兔NO/ET~(-1)值约为大鼠低氧2 wk和3 wk的2倍(P<0·01)。说明不同低氧暴露时间,高原鼠兔和大鼠的NO、ET~(-1)及NO/ET~(-1)值有显著差异,提示NO/ET~(-1)值可以作为有机体是否适应高原低氧环境的一个指标。  相似文献   

13.
Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.  相似文献   

14.
Summary The reactions of the previously described neuro-epithelial bodies (NEB) (Lauweryns et al., 1969, 1970, 1972a, b, 1973a, b, c, 1974, 1975) in young rabbits to: (1) hypoxia with normoxaemia in the arteria pulmonalis on the one hand, and (2) hypoxaemia in the arteria pulmonalis with normoxic aeration on the other hand, has been investigated by means of cross-circulation experiments and light microscopical, electron microscopical and morphometrical techniques.Hypoxically aerated young rabbits, which received normoxaemic blood in their arteria pulmonalis from a donor rabbit by means of an arterio-arterial cross-circulation with mutual exchange transfusion, revealed an increased exocytosis of the dense-core vesicles of their NEB. Normoxically aerated young rabbits which received hypoxaemic blood in an identical manner, did not exhibit an increased exocytosis.It is concluded that the NEB apparently react directly to the hypoxia of the inhaled air and not to the hypoxaemia of the pulmonary blood. By the release of serotonin and a polypeptide substance, they may produce a local vasoconstriction in hypoxically aerated lung areas, enabling an intrapulmonary regulation of the V/Q ratio. This is regarded as additional proof that the NEB — while being modulated by the CNS — probably are intrapulmonary chemoreceptors with local secretory activities, reacting to the composition of the inhaled air.  相似文献   

15.
Studies of skeletal muscle disuse, either in patients on bed rest or experimentally in animals (immobilization), have demonstrated that decreased protein synthesis is common, with transient parallel increases in protein degradation. Muscle disuse atrophy involves a process of transition from slow to fast myosin fiber types. A shift toward glycolysis, decreased capacity for fat oxidation, and substrate accumulation in atrophied muscles have been reported, as has accommodation of the liver with an increased gluconeogenic capacity. Recent studies have modeled skeletal muscle disuse by using cyclic stretch of differentiated myotubes (C2C12), which mimics the loading pattern of mature skeletal muscle, followed by cessation of stretch. We utilized this model to determine the metabolic changes using non-targeted metabolomics analysis of the media. We identified increases in amino acids resulting from muscle atrophy-induced protein degradation (largely sarcomere) that occurs with muscle atrophy that are involved in feeding the Kreb’s cycle through anaplerosis. Specifically, we identified increased alanine/proline metabolism (significantly elevated proline, alanine, glutamine, and asparagine) and increased α-ketoglutaric acid, the proposed Kreb’s cycle intermediate being fed by the alanine/proline metabolic anaplerotic mechanism. Additionally, several unique pathways not clearly delineated in previous studies of muscle unloading were seen, including: (1) elevated keto-acids derived from branched chain amino acids (i.e. 2-ketoleucine and 2-keovaline), which feed into a metabolic pathway supplying acetyl-CoA and 2-hydroxybutyrate (also significantly increased); and (2) elevated guanine, an intermediate of purine metabolism, was seen at 12 h unloading. Given the interest in targeting different aspects of the ubiquitin proteasome system to inhibit protein degradation, this C2C12 system may allow the identification of direct and indirect alterations in metabolism due to anaplerosis or through other yet to be identified mechanisms using a non-targeted metabolomics approach.  相似文献   

16.
Macrophage migration inhibitory factor (MIF) is a well-described pro-inflammatory mediator that has also been implicated in the process of oncogenic transformation and tumor progression. However, despite the compelling evidence that MIF is overexpressed in, and contributes to, the pathology of inflammatory and malignant diseases the mechanisms that contribute to exaggerated expression of MIF have been poorly described. Here we show that hypoxia, and specifically HIF-1alpha, is a potent and rapid inducer of MIF expression. In addition, we demonstrate that hypoxia-induced MIF expression is dependent upon a HRE in the 5'UTR of the MIF gene but is further modulated by CREB expression. We propose a model where hypoxia-induced MIF expression is driven by HIF-1 but amplified by hypoxia-induced degradation of CREB. Given the importance of MIF in inflammatory and malignant diseases these data reveal a HIF-1-mediated pathway as a potential therapeutic target for suppression of MIF expression in hypoxic tissues.  相似文献   

17.
18.
基于UPLC-QTOF-MS代谢组学研究灰树花发酵的代谢差异   总被引:1,自引:0,他引:1  
雷露  吴天祥  王川南 《菌物学报》2020,39(10):1920-1932
为了解天麻苦荞复配液的添加对灰树花深层发酵过程中代谢产物的差异性,采用超高效液相色谱-四级杆串联飞行时间质谱(UPLC-QTOF-MS)技术结合多变量统计分析方法,对发酵7d的灰树花菌丝体细胞代谢物进行分析。主成分(PCA)模型显示添加天麻苦荞复配液的菌丝体细胞与对照组菌丝体细胞相比代谢产物差异明显(P<0.05),通过正交偏最小二乘判别分析(OPLS-DA),以VIP(varible importance in the projection)>1和P<0.05为条件进行筛选和鉴定得到44种差异代谢物,包括糖类6种、氨基酸类13种、维生素类5种、核苷酸类7种、有机酸类10种、脂肪酸类3种。其中,与对照组相比鼠李糖、D-半乳糖、D-甘露醇、果糖-6-磷酸等7种物质含量显著下调,D-木糖醇、异亮氨酸、赖氨酸、泛酸、二十二碳六烯酸、D-葡萄糖醛酸、琥珀酸等37种物质含量显著上调。通过对差异代谢物进行通路分析,得到具有显著影响的代谢通路14条,推测了灰树花胞外多糖合成通路。由此推断天麻苦荞复配液的添加对灰树花胞外多糖的增效作用和提升营养品质的原因,为今后深层次研究外源添加物对灰树花发酵过程的影响提供理论依据。  相似文献   

19.
Background Dendritic cells (DCs) are the most effective antigen-presenting cells. In the last decade, the use of DCs for immunotherapy of cancer patients has been vastly increased. High endocytic capacity together with a unique capability of initiating primary T-cell responses have made DCs the most potent candidates for this purpose. Although DC vaccination occasionally leads to tumor regression, clinical efficacy, and immunogenicity of DCs in clinical trials has not been yet clarified. The present study evaluated the safety and effectiveness of tumor-lysate loaded DC vaccines in advanced colorectal cancer (CRC) patients with carcinoembryonic antigen (CEA) positive tumors. Results Six patients HLA-A*0201-positive were vaccinated with autologous DCs loaded with tumor lysates (TL) together with tetanus toxoid antigen, hepatitis B, and influenza matrix peptides. Two additional patients were injected with DCs that were generated from their sibling or parent with one haplotype mismatch. All patients received the vaccines every 2 weeks, with a total of three intra-nodal injections per patient. The results indicated that DC vaccination was safe and well tolerated by the patients. Specific immune responses were detected and in some patients, transient stabilization or even reduction of CEA levels were observed. The injection of haplotype mismatched HLA-A*0201-positive DCs resulted in some enhancement of the anti-tumor response in vitro and led to stabilization/reduction of CEA levels in the serum, compared to the use of autologous DCs. Conclusion Altogether, these results suggest that TL-pulsed DCs may be an effective vaccine method in CRC patients. Elimination of regulatory mechanisms as well as adjustment of the vaccination protocol may improve the efficacy of DC vaccination. An erratum to this article can be found at  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号