首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major structural component of the cuticle of plants is cutin. Analysis of the function of cutin in vivo has been limited because no mutants with specific defects in cutin have been characterized. Therefore, transgenic Arabidopsis plants were generated that express and secrete a cutinase from Fusarium solani f sp pisi. Arabidopsis plants expressing the cutinase in the extracellular space showed an altered ultrastructure of the cuticle and an enhanced permeability of the cuticle to solutes. In addition, pollen could germinate on fully differentiated leaves of cutinase-expressing plants but not on control leaves. These differences coincided with strong postgenital organ fusions. The junctions of the fusions contained pectic polysaccharides. As fused organs grew apart from each other, organ deformations and protrusions of epidermal cells developed at positions with high mechanical stress. These results demonstrate that an intact cutin layer not only is important for plant-environment interactions but also prevents fusions between different plant organs and is therefore necessary for normal epidermal differentiation and organ formation.  相似文献   

2.
Cutinsomes, spherical nanoparticles containing cutin mono‐ and oligomers, are engaged in cuticle formation. Earlier they were revealed to participate in cuticle biosynthesis in Solanum lycopersicum fruit and Ornithogalum umbellatum ovary epidermis. Here, transmission electron microscopy (TEM) and immunogold labeling with antibody against the cutinsomes were applied to aerial cotyledon epidermal cells of Arabidopsis thaliana mature embryos. TEM as well as gold particles conjugated with the cutinsome antibody revealed these structures in the cytoplasm, near the plasmalemma, in the cell wall and incorporated into the cuticle. Thus, the cutinsomes most probably are involved in the formation of A. thaliana embryo cuticle and this model plant is another species in which these specific structures participate in the building of cuticle in spite of the lack of the lipotubuloid metabolon. In addition, a mechanism of plant cuticle lipid biosynthesis based on current knowledge is proposed.  相似文献   

3.
Morphogenesis of some tissues and organs in the developing embryo requires the transformation of epithelial cells into mesenchyme followed by cell motility and invasion of surrounding connective tissues. Details of the mechanisms involved in this important process are beginning to be elucidated. The epithelial-mesenchymal transformation (EMT) process involves many steps, one of which is the upregulation and activation of specific extracellular proteinases including members of the matrix metalloproteinase (MMP) family. Here we analyze the role of MMPs in the initiation of the mesenchymal cell phenotype in the developing heart, and find that they are necessary for the invasion of mesenchymal cells into the extracellular matrix of the endocardial cushion tissues. An important requirement in the formation of this mesenchyme is the turnover of type IV collagen along the basal surface of endocardial cells. In vitro experiments suggest that type IV collagen does not provide a suitable migratory substrate for endocardial cushion cells unless MMP-2 and MT-MMP are active. Relevant MMPs were found to be upregulated by factors known to be involved in the induction of the EMT such as TGFbeta3. These results provide evidence of an important role for MMPs during a specific stage of the epithelial mesenchymal transformation in the embryonic heart, and suggest that specific cell-matrix interactions which facilitate cell migration only occur when the composition of the surrounding extracellular matrix is proteolytically altered.  相似文献   

4.
5.
Plant surfaces are covered by a layer of cuticle, which functions as a natural barrier to protect plants from mechanical damage, desiccation, and microbial invasion. Results presented in this report show that the epicuticular wax and the cuticle of plant leaves also play an important role in resisting xenobiotic invasion. Although the epicuticular wax is impermeable to hydrophilic xenobiotics, the cuticle not only restricts the penetration of hydrophilic compounds into leaf cells, but also traps lipophilic ones. The role of the epidermal cells of plant leaves in resisting xenobiotic invasion has been neglected until now. The present study shows, for the first time, that the epidermal cells may reduce or retard the transport of lipophilic xenobiotics into the internal tissues through vacuolar sequestration. Although the guard cells appear to be an easy point of entry for xenobiotics, only a very small proportion of xenobiotics present on the leaf surface actually moves into leaf tissues via the guard cells .  相似文献   

6.
植物角质层基因研究进展   总被引:2,自引:0,他引:2  
角质层是形成于陆生植物表皮细胞壁外表面的脂质保水层。角质层的基本功能是保水,同时也在响应逆境胁迫、自我清洁及器官发育等方面发挥作用。角质层通常由角质和蜡质组成。角质是角质层的主要结构成分,其主要组分是聚酯。蜡质成分主要为极长链饱和脂肪酸及其衍生物。这些组分在内质网上合成后被转运到细胞表面,进一步形成完整的角质层结构。近年来通过对角质层相关突变体及相应基因的研究,人们对角质层在合成、转运、形成及调控等各个阶段都有了较为深入的认识。蜡质和角质的合成途径已在角质层相关基因功能的解释下逐渐浮出水面。有关角质层前体转运方面的研究,主要的突破在于ABCG全转运蛋白的发现和功能解析。在角质层形成的机理方面,角质层基因中的酯酶和脂酶类基因的研究有助于进一步认识这个复杂的过程。在基因调控方面,新的转录因子基因和角质层与环境之间的相互关系研究,也为已知的调控网络增加了新内容。该文综述了目前关于角质层相关基因的最新研究进展。  相似文献   

7.
8.
An important adaptation to land habitats in terrestrial isopod crustaceans is development of embryos in a fluid-filled female brood pouch, marsupium. The study brings insight into the structure and protective role of egg envelopes and cuticle renewal during ontogenetic development of Porcellio embryos and marsupial mancas. Egg envelopes cover embryos, the outer chorion until late-stage embryo and the inner vitelline membrane throughout the whole embryonic development. Egg envelopes of Porcellio have relatively simple ultrastuctural architecture compared to Drosophila egg envelopes. Exoskeletal cuticle is produced in late embryonic development by hypodermal cells of the embryo and is renewed in further development in relation to growth of developing embryos and mancas. Cuticle structure and renewal in prehatching late-stage embryos and marsupial mancas exhibit main features of cuticle in adults. Epicuticle is thin and homogenous. The characteristic arrangement of chitin-protein fibers and the dense distal layer in exocuticle are hardly discernible in prehatching embryo and distinct in marsupial mancas. Endocuticle consists of alternating electron dense and electron lucent sublayers and is perforated by pore canals in both stages. Differences from adult cuticle are evident in cuticle thickness, ultrastructure and mineralization. Signs of cuticle renewal in prehatching embryo and marsupial mancas such as detachment of cuticle from hypodermis, partial disintegration of endocuticle and assembly of new cuticle are described.  相似文献   

9.
10.
11.
12.
Proliferating cells properly divide into their daughter cells through a process that is mediated by kinetochores, protein–complexes that assemble at the centromere of each sister chromatid. Each kinetochore has to establish a tight bipolar attachment to the spindle apparatus before sister chromatid separation is initiated. The spindle assembly checkpoint (SAC) links the biophysical attachment status of the kinetochores to mitotic progression and ensures that even a single misaligned kinetochore keeps the checkpoint active. The mechanism by which this is achieved is still elusive. Current computational models of the human SAC disregard important biochemical properties by omitting any kind of feedback loop, proper kinetochore signals, and other spatial properties such as the stability of the system and diffusion effects. To allow for more realistic in silico study of the dynamics of the SAC model, a minimal mathematical framework for SAC activation and silencing is introduced. A nonlinear ordinary differential equation model successfully reproduces bifurcation signaling switches with attachment of all 92 kinetochores and activation of APC/C by kinetochore-driven feedback. A partial differential equation model and mathematical linear stability analyses indicate the influence of diffusion and system stability. The conclusion is that quantitative models of the human SAC should account for the positive feedback on APC/C activation driven by the kinetochores which is essential for SAC silencing. Experimental diffusion coefficients for MCC subcomplexes are found to be insufficient for rapid APC/C inhibition. The presented analysis allows for systems-level understanding of mitotic control, and the minimal new model can function as a basis for developing further quantitative–integrative models of the cell division cycle.  相似文献   

13.
Lectin binding pattern in the developing chick embryonic epidermis was studied using peroxidase labeling method. The epidermis of the 13-day-old embryo is in an undifferentiated state. Little binding of soybean agglutinin (SBA), specific for N-acetyl-D-galactosamine, and peanut agglutinin (PNA), specific for β-D-galactose, was seen in such epidermal cells. As the epidermis developed toward keratinization, the cell membrane of the differentiating flattened cells was positively stained with SBA and PNA. The positive staining was also seen in the supranuclear region of the cells located between the flattened cells and the basal cells. The basal cells remained unstained in all the stages of development. Similar staining pattern with SBA and PNA was seen in the cultured skin explants during the epidermal differentiation in vitro. These observations show that the SBA- and PNA-reactive glycoconjugates accumulate during the epidermal cell differentiation, suggesting their important roles in the maintenance of the ordered structure of the epidermis.  相似文献   

14.
The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.  相似文献   

15.
Although the multilayered structure of the plant cuticle was discovered many years ago, the molecular basis of its formation and the functional relevance of the layers are not understood. Here, we present the permeable cuticle1 (pec1) mutant of Arabidopsis thaliana, which displays features associated with a highly permeable cuticle in several organs. In pec1 flowers, typical cutin monomers, such as ω-hydroxylated fatty acids and 10,16-dihydroxypalmitate, are reduced to 40% of wild-type levels and are accompanied by the appearance of lipidic inclusions within the epidermal cell. The cuticular layer of the cell wall, rather than the cuticle proper, is structurally altered in pec1 petals. Therefore, a significant role for the formation of the diffusion barrier in petals can be attributed to this layer. Thus, pec1 defines a new class of mutants. The phenotypes of the pec1 mutant are caused by the knockout of ATP BINDING CASSETTEG32 (ABCG32), an ABC transporter from the PLEIOTROPIC DRUG RESISTANCE family that is localized at the plasma membrane of epidermal cells in a polar manner toward the surface of the organs. Our results suggest that ABCG32 is involved in the formation of the cuticular layer of the cell wall, most likely by exporting particular cutin precursors from the epidermal cell.  相似文献   

16.
Exoskeletons stabilize cell, tissue, and body morphology in many living organisms including fungi, plants, and arthropods. In insects, the exoskeleton, the cuticle, is produced by epidermal cells as a protein extracellular matrix containing lipids and the polysaccharide chitin, and its formation requires coordinated synthesis, distribution, and modification of these components. Eventually, the stepwise secretion and sorting of the cuticle material results in a layered structure comprising the envelope, the proteinaceous epicuticle, and the chitinous procuticle. To study the role of chitin during cuticle development, we analyzed the consequences of chitin absence in the embryo of Drosophila melanogaster caused by mutations in the Chitin Synthase-1 (CS-1) gene, called krotzkopf verkehrt (kkv). Our histological data confirm that chitin is essential for procuticle integrity and further demonstrate that an intact procuticle is important to assemble and to stabilize the chitin-less epicuticle. Moreover, the phenotype of CS-1/kkv mutant embryos indicates that chitin is required to attach the cuticle to the epidermal cells, thereby maintaining epidermal morphology. Finally, sclerotization and pigmentation, which are the last steps in cuticle differentiation, are impaired in tissues lacking CS-1/kkv function, suggesting that proper cuticle structure is crucial for the activity of the underlying enzymes.  相似文献   

17.
The apoptotic caspase-3/8 feedback loop describes the core of the extrinsic pro-apoptotic signaling pathway, an essential part of apoptosis. Latter is a prototype of the programmed cell death, which enables organisms to remove damaged or infected cells. The reaction network of the caspase-3/8 feedback loop in a single cell is modeled by a reaction-diffusion system, which shows a bistable behavior. In this work, we present an appropriate bounded invariant region for the bistable reaction-diffusion system in order to theoretically confirm that diffusion rapidly balances the concentrations of the different caspase types. This justifies the decomposition of the dynamics into a diffusion dominated part on a very short time scale and a pure reaction driven dynamics on a large time scale.  相似文献   

18.
The biophysical design of plant cuticles: an overview   总被引:2,自引:0,他引:2  
The outer surfaces of epidermal cell walls are impregnated with an extracellular matrix called the cuticle. This composite matrix provides several functions at the interface level that enable plants to thrive in different habitats and withstand adverse environmental conditions. The lipid polymer cutin, which is the main constituent of the plant cuticle, has some unique biophysical properties resulting from its composition and structure. This review summarizes the progress made towards understanding the biophysical significance of this biopolymer with special focus on its structural, thermal, biomechanical, and hydric properties and relationships. The physiological relevance of such biophysical properties is discussed in light of existing knowledge on the plant cuticle.  相似文献   

19.
We describe a mechanism for context-dependent cell signaling mediated by autocrine loops with positive feedback. We demonstrate that the composition of the extracellular medium can critically influence the intracellular signaling dynamics induced by extracellular stimuli. Specifically, in the epidermal growth factor receptor (EGFR) system, amplitude and duration of mitogen-activated protein kinase (MAPK) activation are modulated by the positive-feedback loop formed by the EGFR, the Ras-MAPK signaling pathway, and a ligand-releasing protease. The signaling response to a transient input is short-lived when most of the released ligand is lost to the cellular microenvironment by diffusion and/or interaction with an extracellular ligand-binding component. In contrast, the response is prolonged or persistent in a cell that is efficient in recapturing the endogenous ligand. To study functional capabilities of autocrine loops, we have developed a mathematical model that accounts for ligand release, transport, binding, and intracellular signaling. We find that context-dependent signaling arises as a result of dynamic interaction between the parts of an autocrine loop. Using the model, we can directly interpret experimental observations on context-dependent responses of autocrine cells to ionizing radiation. In human carcinoma cells, MAPK signaling patterns induced by a short pulse of ionizing radiation can be transient or sustained, depending on cell type and composition of the extracellular medium. On the basis of our model, we propose that autocrine loops in this, and potentially other, growth factor and cytokine systems may serve as modules for context-dependent cell signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号