共查询到20条相似文献,搜索用时 0 毫秒
1.
MethodsGerminated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography.ConclusionsThe results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system. 相似文献
2.
3.
The loss of organic and inorganic carbon from roots into soil underpins nearly all the major changes that occur in the rhizosphere. In this review we explore the mechanistic basis of organic carbon and nitrogen flow in the rhizosphere. It is clear that C and N flow in the rhizosphere is extremely complex, being highly plant and environment dependent and varying both spatially and temporally along the root. Consequently, the amount and type of rhizodeposits (e.g. exudates, border cells, mucilage) remains highly context specific. This has severely limited our capacity to quantify and model the amount of rhizodeposition in ecosystem processes such as C sequestration and nutrient acquisition. It is now evident that C and N flow at the soil–root interface is bidirectional with C and N being lost from roots and taken up from the soil simultaneously. Here we present four alternative hypotheses to explain why high and low molecular weight organic compounds are actively cycled in the rhizosphere. These include: (1) indirect, fortuitous root exudate recapture as part of the root’s C and N distribution network, (2) direct re-uptake to enhance the plant’s C efficiency and to reduce rhizosphere microbial growth and pathogen attack, (3) direct uptake to recapture organic nutrients released from soil organic matter, and (4) for inter-root and root–microbial signal exchange. Due to severe flaws in the interpretation of commonly used isotopic labelling techniques, there is still great uncertainty surrounding the importance of these individual fluxes in the rhizosphere. Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally. 相似文献
4.
Plant and Soil - We examined how restoration affects the structure and function of grasslands belowground by relating changes in the morphology and architecture of root systems of dominant plants... 相似文献
5.
6.
7.
Background and Aims
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous.Methods
To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations.Key Results
Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples.Conclusions
The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. 相似文献8.
Resource, biological community and soil functional stability dynamics at the soil–litter interface 下载免费PDF全文
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance. 相似文献
9.
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance. 相似文献
10.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions. 相似文献
11.
Chao-Bo Zhang Li-Hua Chen Ya-Ping Liu Xiao-Dong Ji Xiu-Ping Liu 《Ecological Engineering》2010,36(1):19-26
In order to evaluate influences of roots on soil shear strength, a triaxial compression test was carried out to study the shear strength of plain soil samples and composites comprised of roots of Robinia pseucdoacacia and soil from the Loess Plateau in Northwest China. Roots were distributed in soil in three forms: vertical, horizontal, and vertical–horizontal (cross). All samples were tested under two different soil water contents. Test results showed that roots have more impacts on the soil cohesion than the friction angle. The presence of roots in soil substantially increased the soil shear strength. Among three root distribution forms, the reinforcing effect of vertical–horizontal (cross) root distribution was the most effective. Increase in soil water content directly induced a decline in soil cohesion of all test samples and resulted in a decrease in shear strength for both plain soil samples and soil–root composites. It was concluded that the triaxial compression test can be effectively used to study influences of roots on soil shear strength. 相似文献
12.
F. Lafolie L. Bruckler H. Ozier-Lafontaine R. Tournebize A. Mollier 《Plant and Soil》1999,210(1):127-143
A knowledge of above and below ground plant interactions for water is essential to understand the performance of intercropped systems. In this work, root water potential dynamics and water uptake partitioning were compared between single crops and intercrops, using a simulation model. Four root maps having 498, 364, 431 and 431 soil-root contacts were used. In the first and second cases, single crops with deep and surface roots were considered, whereas in the third and fourth cases, roots of two mixed crops were simultaneously considered with different row spacing (40 cm and 60 cm). Two soils corresponding to a clay and a silty clay loam were used in the calculations. A total maximum evapotranspiration of 6 mm d-1 for both single or mixed crops was considered, for the mixed crops however, two transpiration distributions between the crops were analyzed (3:3 mm d-1, or 4:2 mm d-1 for each crop, respectively). The model was based on a previous theoretical framework applied to single or intercropped plants having spatially distributed roots in a two-dimensional domain. Although water stress occurred more rapidly in the loam than in the clay, due to the rapid decrease of the soil water reserve in the loam, the role of the root arrangement appeared to be crucial for water availability. Interactions between the distribution of transpiration among mixed crops and the architecture of the root systems which were in competition led to water movements from zones with one plant to another, or vice versa, which corresponded to specific competition or facilitation effects. Decreasing the distances between roots may increase competition for water, although it may determine greater water potential gradients in the soil that increase lateral or vertical water fluxes in the soil profile. The effects of the root competition on water uptake were quite complicated, depending on both environmental conditions, soil hydrodynamic properties, and time scales. Although some biological adaptive mechanisms were disregarded in the analysis, the physically 2-D based model may be considered as a tool to study the exploitation of environmental heterogeneity at microsite scales. 相似文献
13.
14.
15.
Background
Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates.Methods
The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes.Key Results
Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series.Conclusions
The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass. 相似文献16.
Plant and Soil - Root morphological response to localised phosphorus (P) application plays a crucial role in P acquisition. However, detailed knowledge of when and where roots respond to P patch... 相似文献
17.
Background
Phosphorus (P) deficiency is wide-spread in agricultural soils. In light of increasing P fertilizer costs, it is of interest to assess the capacity of soil microbes to mobilise native soil P and added P. There is currently no method to assess P mobilisation in situ.Methods
The soil P mobilisation potential was assessed by incubating low P soil for up to 30?days with poorly available P sources; C and N were added to increase microbial activity and ensure that only P was limiting microbial growth.Results
The increase in microbial P from day 0 to day 15 showed that microbes were able to mobilise P from FePO4 and phytate. The P mobilisation potential (sum of microbial and resin P) of the rhizosphere soil decreased in the following order: faba bean > chickpea and white lupin > wheat. After 10?days, up to 80% of the mobilised P was microbial P, whereas after 30?days, almost all P mobilised was resin P.Conclusions
The method developed in this study is useful assessing not only potential of a soil to mobilise P but also, by using different poorly available P sources, the mechanisms of P mobilisation. 相似文献18.
The root microbiota—a fingerprint in the soil? 总被引:1,自引:0,他引:1
Background
The root system of a plant is known to host a wide diversity of microbes that can be essential or detrimental to the plant. Microbial ecologists have long struggled to understand what factors structure the composition of these communities. An overlooked part of the microbial community succession in root systems has been the potential for individual variation among plants shaped by early colonisation events such as microbial exposure of the seed inside the parent plant and during dispersal.Scope
In this review we outline life events of the plant that can affect the composition of its root microbiota and relate ecological theory of community assembly to the formation of the root microbiota.Conclusion
All plants are exposed to environmental conditions and events throughout their lifetime that shape their phenotype. The microbial community associated with the plant is ultimately an extension of this phenotype. Therefore, only by following a plant from its origin inside the flower to senescence, can we fully understand how the associated microbial community was assembled and what determined its composition. 相似文献20.
A. Schneider 《Plant and Soil》2003,251(2):331-341
PlantK uptake depends on soil K supply and this can be modelled using the K concentration in the soil solution (CK), the soil K buffer power (SK) and the effective K diffusion coefficient. With the appropriate sorption–desorption curve, the parameters CK and SK can be estimated from the equilibrium K concentration (CK,0) and from the slope of the curve at CK,0 (SK,0). However, buffer power is frequently estimated by the ratio of the soil exchangeable K content (EK) to CK. Up to now, SK,0 had not been compared with this ratio, nor had CK,0 been compared with any CK estimate from soil solution extract measurements. To address this question, we collected 45 soil samples from 15 K fertilisation trials in France. The soils differed widely in their physicochemical characteristics, soil solution K concentration and buffer power. For each soil sample, a sorption–desorption curve was established from 16-h experiments performed at the estimated Ca concentration of the soil solution. The CK,0 estimates were compared with the K concentrations measured in the soil solution obtained either by direct centrifugation (CCK) or by centrifugation with 1,1,2-trichlorotrifluoroethane (TFECK). On average, CCK values were 16% higher than TFECK values, whereas CK,0 values were intermediate between the two. The K buffer power increased when CEC increased and when CK decreased. Multiple linear regressions using either CEC at the soil pH and TFECK–1 or EK and TFECK–1 as independent variables accounted for more than 98 or 95% of the variability of SK,0. The buffer power estimated by the ratio of EK to TFECK overestimated by 100% the SK,0 value obtained from the sorption–desorption curves. 相似文献