首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hybrid Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) is a newly available imaging modality combining the molecular and metabolic PET information with the morphological and functional data provided by MRI. Integrated PET/MRI tomographs were conceived in analogy to the current PET/Computed Tomography (PET/CT) technology, with specific properties linked to the intrinsic differences of MRI and CT imaging. In the field of neuro-imaging, in particular, MRI provides a larger panel of information, as compared with CT, and is already systematically fused and used as a support for PET images for diagnostic and research purposes. We summarize here our current experience with the first integrated PET/MRI tomograph installed in Switzerland, concerning specifically three clinical applications: brain tumors characterization, the diagnosis of neurodegenerative dementias and the presurgical evaluation of pharmaco-resistant epilepsy. With this sequential tomograph, we could combine the full range of diagnostic MR sequences (including diffusion tensor imaging, tractography, spectroscopy, functional MR) with PET imaging of brain glucose metabolism (by 18F-Fluorodeoxyglucose–FDG) and of amino acid transport (by 18F-Fluoroethyltyrosine–FET). We also summarize the main results obtained in neuro-imaging by the different groups working with these new hybrid tomographs. These data show that PET/MRI, acquired in a single imaging session, may represent the modality of choice for neuro-imaging.  相似文献   

2.
3.
《Médecine Nucléaire》2023,47(4):179-182
Hybrid PET/MRI imaging is a technological innovation allowing simultaneous acquisition of metabolic targets and fine tissue characterization. It is particularly indicated in pelvic gynecological cancers, for which FDG PET and MRI with diffusion sequences are recommended, performed here according to the one stop shop principle. Based on an analysis of the literature, we share in this article our local experience (65 examinations in 47 patients).  相似文献   

4.
Non-invasive longitudinal detection and evaluation of gene expression in living animals can provide investigators with an understanding of the ontogeny of a gene's biological function(s). Currently, mouse model systems are used to optimize magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and optical imaging modalities to detect gene expression and protein function. These molecular imaging strategies are being developed to assess tumor growth and the tumor microenvironment. In addition, pre-labeling of progenitor cells can provide invaluable information about the developmental lineage of stem cells both in organogenesis and tumorigenesis. The feasibility of this approach has been extensively tested by targeting of endogenous tumor cell receptors with labeled ligand (or ligand analog) reporters and targeting enzymes with labeled substrate (or substrate analog). We will primarily discuss MRI, PET, and SPECT imaging of cell surface receptors and the feasibility of non-invasive imaging of gene expression using the tumor microenvironment (e.g., hypoxia) as a conditional regulator of gene expression.  相似文献   

5.
BackgroundThe primary objective was to compare the overall diagnostic performance, presented as detection rate of 68Ga-PSMA-HBED-CC positron emission tomography/magnetic resonance imaging (PSMA PET/MRI) versus conventional, multiparametric MRI (mpMRI) in a population of patients with biochemically recurrent prostate cancer. In conjunction with this analysis, secondary objectives included the evaluation of the detection rate stratified by PSA levels and primary treatment modality.MethodsA total of 165 PSMA PET MRI were performed from April 2018 to May 2021, of whom 108 were presenting for biochemical recurrent disease. The PSMA PET vertex to thigh were read by two different board-certified nuclear medicine physicians while the MRI head and neck, chest, abdomen, and pelvis (with dedicated, PI-RADS compliant multiparametric prostate MRI) were read by two board certified diagnostic radiologists.AnalysisPSMA PET/MRI had a higher detection rate than mpMRI when evaluating patients with biochemical recurrence (BCR) with similar results demonstrated when sub-analysis was performed using PSA levels, primary treatment modality, and time since androgen deprivation therapy. Our study also showed PSMA PET/MRI had a higher sensitivity than mpMRI.DiscussionOur findings demonstrate that PSMA PET/MRI is a better imaging modality in the detection of disease in the setting of BCR when compared to MRI alone. Combined utility with PSMA PET/MRI is a powerful tool which can aid in not only the detection of disease, but also guide in treatment planning for prostate cancer patients.  相似文献   

6.

Background

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common type of mitochondrial disease and is characterized by stroke-like episodes (SEs), myopathy, lactic acidosis, diabetes mellitus, hearing-loss and cardiomyopathy. The causal hypotheses for SEs in MELAS presented to date are angiopathy, cytopathy and neuronal hyperexcitability. L-arginine (Arg) has been applied for the therapy in MELAS patients.

Scope of review

We will introduce novel in vivo functional brain imaging techniques such as MRI and PET, and discuss the pathogenesis of SEs in MELAS patients. We will further describe here our clinical experience with L-arg therapy and discuss the dual pharmaceutical effects of this drug on MELAS.

Major conclusions

Administration of L-arg to MELAS patients has been successful in reducing neurological symptoms due to acute strokes and preventing recurrences of SEs in the chronic phase. L-Arg has dual pharmaceutical effects on both angiopathy and cytopathy in MELAS.

General significance

In vivo functional brain imaging promotes a better understanding of the pathogenesis and potential therapies for MELAS patients. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.  相似文献   

7.
Pharmacological MRI (phMRI) is a new and promising method to study the effects of substances on brain function that can ultimately be used to unravel underlying neurobiological mechanisms behind drug action and neurotransmitter-related disorders, such as depression and ADHD. Like most of the imaging methods (PET, SPECT, CT) it represents a progress in the investigation of brain disorders and the related function of neurotransmitter pathways in a non-invasive way with respect of the overall neuronal connectivity. Moreover it also provides the ideal tool for translation to clinical investigations. MRI, while still behind in molecular imaging strategies compared to PET and SPECT, has the great advantage to have a high spatial resolution and no need for the injection of a contrast-agent or radio-labeled molecules, thereby avoiding the repetitive exposure to ionizing radiations. Functional MRI (fMRI) is extensively used in research and clinical setting, where it is generally combined with a psycho-motor task. phMRI is an adaptation of fMRI enabling the investigation of a specific neurotransmitter system, such as serotonin (5-HT), under physiological or pathological conditions following activation via administration of a specific challenging drug.The aim of the method described here is to assess brain 5-HT function in free-breathing animals. By challenging the 5-HT system while simultaneously acquiring functional MR images over time, the response of the brain to this challenge can be visualized. Several studies in animals have already demonstrated that drug-induced increases in extracellular levels of e.g. 5-HT (releasing agents, selective re-uptake blockers, etc) evoke region-specific changes in blood oxygenation level dependent (BOLD) MRI signals (signal due to a change of the oxygenated/deoxygenated hemoglobin levels occurring during brain activation through an increase of the blood supply to supply the oxygen and glucose to the demanding neurons) providing an index of neurotransmitter function. It has also been shown that these effects can be reversed by treatments that decrease 5-HT availability16,13,18,7. In adult rats, BOLD signal changes following acute SSRI administration have been described in several 5-HT related brain regions, i.e. cortical areas, hippocampus, hypothalamus and thalamus9,16,15. Stimulation of the 5-HT system and its response to this challenge can be thus used as a measure of its function in both animals and humans2,11.  相似文献   

8.
Main contribution of PET in the management of brain tumors is at the therapeutic level. Specific reasons explain this role of molecular imaging in the therapeutic management of brain tumors, especially gliomas. Gliomas are by nature infiltrating neoplasms and the interface between tumor and normal brain tissue may not be accurately defined on CT and MRI. Also, gliomas are often histologically heterogeneous with anaplastic areas evolving within a low-grade tumor, and the contrast-enhancement on CT or MRI does not represent a good marker for anaplastic tissue detection. Finally, assessment of tumor residue, recurrence or progression may be altered by different signals related to inflammation or adjuvant therapies, even on contrast-enhanced CT and MRI. These limitations of the conventional neuroimaging in delineating tumor and detecting anaplastic tissue lead to potential inaccuracy in lesion targeting at different steps of the management (diagnostic, surgical, and post-therapeutic stages). Molecular information provided by PET has proved helpful to supplement morphological imaging data in this context. 18F-FDG (FDG) and amino-acid tracers such as 11C-methionine (MET), provides complementary metabolic data that are independent from the anatomical MR information. These tracers help in the definition of glioma extension, in the detection of anaplastic areas and in the postoperative follow-up. Additionally, PET data have an independent prognostic value. To take advantage of PET data in glioma treatment, PET might be integrated in the planning of image-guided biopsies, radiosurgery and resection.  相似文献   

9.
In vivo19F MRI allows quantitative cell tracking without the use of ionizing radiation. It is a noninvasive technique that can be applied to humans. Here, we describe a general protocol for cell labeling, imaging, and image processing. The technique is applicable to various cell types and animal models, although here we focus on a typical mouse model for tracking murine immune cells. The most important issues for cell labeling are described, as these are relevant to all models. Similarly, key imaging parameters are listed, although the details will vary depending on the MRI system and the individual setup. Finally, we include an image processing protocol for quantification. Variations for this, and other parts of the protocol, are assessed in the Discussion section. Based on the detailed procedure described here, the user will need to adapt the protocol for each specific cell type, cell label, animal model, and imaging setup. Note that the protocol can also be adapted for human use, as long as clinical restrictions are met.  相似文献   

10.

Purpose

Ventricular function is a powerful predictor of survival in patients with heart failure (HF). However, studies characterizing gated F-18 FDG PET for the assessment of the cardiac function are rare. The aim of this study was to prospectively compare gated F-18 FDG PET and cardiac MRI for the assessment of ventricular volume and ejection fraction (EF) in patients with HF.

Methods

Eighty-nine patients with diagnosed HF who underwent both gated F-18 FDG PET/CT and cardiac MRI within 3 days were included in the analysis. Left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV), and EF were obtained from gated F-18 FDG PET/CT using the Quantitative Gated SPECT (QGS) and 4D-MSPECT software.

Results

LV EDV and LV ESV measured by QGS were significantly lower than those measured by cardiac MRI (both P<0.0001). In contrast, the corresponding values for LV EDV for 4D-MSPECT were comparable, and LV ESV was underestimated with borderline significance compared with cardiac MRI (P = 0.047). LV EF measured by QGS and cardiac MRI showed no significant differences, whereas the corresponding values for 4D-MSPECT were lower than for cardiac MRI (P<0.0001). The correlations of LV EDV, LV ESV, and LV EF between gated F-18 FDG PET/CT and cardiac MRI were excellent for both QGS (r = 0.92, 0.92, and 0.76, respectively) and 4D-MSPECT (r = 0.93, 0.94, and 0.75, respectively). However, Bland-Altman analysis revealed a significant systemic error, where LV EDV (−27.9±37.0 mL) and ESV (−18.6±33.8 mL) were underestimated by QGS.

Conclusion

Despite the observation that gated F-18 FDG PET/CT were well correlated with cardiac MRI for assessing LV function, variation was observed between the two imaging modalities, and so these imaging techniques should not be used interchangeably.  相似文献   

11.
Because of its complex geometry, assessment of right ventricular (RV) function is more difficult than it is for the left ventricle (LV). Because gene-targeted mouse models of cardiomyopathy may involve remodeling of the right heart, the purpose of this study was to develop high-resolution functional magnetic resonance imaging (MRI) for in vivo quantification of RV volumes and global function in mice. Thirty-three mice of various age were studied under isoflurane anesthesia by electrocardiogram-triggered cine-MRI at 7 T. MRI revealed close correlations between RV and LV stroke volume and cardiac output (r = 0.97, P < 0.0001 each). Consistent with human physiology, murine RV end-diastolic and end-systolic volumes were significantly higher compared with LV volumes (P < 0.05 each). MRI in mice with LV heart failure due to myocardial infarction revealed significant structural and functional changes of the RV, indicating RV dysfunction. Hence, MRI allows for the quantification of RV volumes and global systolic function with high accuracy and bears the potential to evaluate mechanisms of RV remodeling in mouse models of heart failure.  相似文献   

12.
Neuroimaging techniques represent powerful tools to assess disease-specific cellular, biochemical and molecular processes non-invasively in vivo. Besides providing precise anatomical localisation and quantification, the most exciting advantage of non-invasive imaging techniques is the opportunity to investigate the spatial and temporal dynamics of disease-specific functional and molecular events longitudinally in intact living organisms, so called molecular imaging (MI). Combining neuroimaging technologies with in vivo models of neurological disorders provides unique opportunities to understand the aetiology and pathophysiology of human neurological disorders. In this way, neuroimaging in mouse models of neurological disorders not only can be used for phenotyping specific diseases and monitoring disease progression but also plays an essential role in the development and evaluation of disease-specific treatment approaches. In this way MI is a key technology in translational research, helping to design improved disease models as well as experimental treatment protocols that may afterwards be implemented into clinical routine. The most widely used imaging modalities in animal models to assess in vivo anatomical, functional and molecular events are positron emission tomography (PET), magnetic resonance imaging (MRI) and optical imaging (OI). Here, we review the application of neuroimaging in mouse models of neurodegeneration (Parkinson's disease, PD, and Alzheimer's disease, AD) and brain cancer (glioma).  相似文献   

13.
Glial cells play an important role in normal brain function and emerging evidence would suggest that their dysfunction may be responsible for some epileptic disease states. Neuroimaging of glial cells is desirable, but there are no clear methods to assess neither their function nor localization. Magnetic resonance imaging (MRI) is now part of a standardized epilepsy imaging protocol to assess patients. Structural volumetric and T2-weighted imaging changes can assist in making a positive diagnosis in a majority of patients. The alterations reported in structural and T2 imaging is predominately thought to reflect early neuronal loss followed by glial hypertrophy. MR spectroscopy for myo-inositol is a being pursued to identify glial alterations along with neuronal markers. Diffusion weighted imaging (DWI) is ideal for acute epileptiform events, but is not sensitive to either glial cells or neuronal long-term changes found in epilepsy. However, DWI variants such as diffusion tensor imaging or q-space imaging may shed additional light on aberrant glial function in the future. The sensitivity and specificity of PET radioligands, including those targeting glial cells (translocator protein) hold promise in being able to image glial cells. As the role of glial function/dysfunction in epilepsy becomes more apparent neuroimaging methods will evolve to assist the clinician and researcher in visualizing their location and function.  相似文献   

14.
Magnetic resonance imaging (MRI) examinations for anatomical studies on collection specimens are becoming more and more frequent. As the presence of metallic objects within the specimens can disturb the acquisition of images and damage both specimens and materials, a simple protocol using radiographs is here proposed to detect these objects in collection specimens before conducting an MRI examination.  相似文献   

15.
PurposePositron emission tomography (PET) images tend to be significantly degraded by the partial volume effect (PVE) resulting from the limited spatial resolution of the reconstructed images. Our purpose is to propose a partial volume correction (PVC) method to tackle this issue.MethodsIn the present work, we explore a voxel-based PVC method under the least squares framework (LS) employing anatomical non-local means (NLMA) regularization. The well-known non-local means (NLM) filter utilizes the high degree of information redundancy that typically exists in images, and is typically used to directly reduce image noise by replacing each voxel intensity with a weighted average of its non-local neighbors. Here we explore NLM as a regularization term within iterative-deconvolution model to perform PVC. Further, an anatomical-guided version of NLM was proposed that incorporates MRI information into NLM to improve resolution and suppress image noise. The proposed approach makes subtle usage of the accompanying MRI information to define a more appropriate search space within the prior model. To optimize the regularized LS objective function, we used the Gauss-Seidel (GS) algorithm with the one-step-late (OSL) technique.ResultsAfter the import of NLMA, the visual and quality results are all improved. With a visual check, we notice that NLMA reduce the noise compared to other PVC methods. This is also validated in bias-noise curve compared to non-MRI-guided PVC framework. We can see NLMA gives better bias-noise trade-off compared to other PVC methods.ConclusionsOur efforts were evaluated in the base of amyloid brain PET imaging using the BrainWeb phantom and in vivo human data. We also compared our method with other PVC methods. Overall, we demonstrated the value of introducing subtle MRI-guidance in the regularization process, the proposed NLMA method resulting in promising visual as well as quantitative performance improvements.  相似文献   

16.
Molecular imaging is an ideal platform for non-invasive detection and assessment of cancer. In recent years, the targeted imaging of CXCR4, a chemokine receptor that has been associated with tumour metastasis, has become an area of intensive research. In our pursuit of a CXCR4-specific radiotracer, we designed and synthesised a novel derivative of the CXCR4 peptidic antagonist TN14003, CCIC16, which is amenable to radiolabelling by chelation with a range of PET and SPECT radiometals, such as 68Ga, 64Cu and 111In as well as 18F (Al18F). Potent in vitro binding affinity and inhibition of signalling-dependent cell migration by unlabelled CCIC16 were confirmed by a threefold uptake in CXCR4-over-expressing cells compared to their isogenic counterparts. Furthermore, in vivo experiments demonstrated the favourable pharmacokinetic properties of the 68Ga-labelled tracer 68GaCCIC16, along with its CXCR4-specific accumulation in tissues with desirable contrast (tumour-to-muscle ratio: 9.5). The specificity of our tracer was confirmed by blocking experiments. Taking into account the attractive intrinsic PET imaging properties of 68Ga, the comprehensive preclinical evaluation presented here suggests that 68GaCCIC16 is a promising PET tracer for the specific imaging of CXCR4-expressing tumours.  相似文献   

17.
Functional imaging methods such as Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) have contributed inestimably to the understanding of physiological cognitive processes in the brain in the recent decades. These techniques for the first time allowed the in vivo assessment of different features of brain function in the living human subject. It was therefore obvious to apply these methods to evaluate pathomechanisms of cognitive dysfunction in disorders such as Alzheimer’s disease (AD) as well. One of the most dominant symptoms of AD is the impairment of memory. In this context, the term “memory” represents a simplification and summarizes a set of complex cognitive functions associated with encoding and retrieval of different types of information. A number of imaging studies assessed the functional changes of neuronal activity in the brain at rest and also during performance of cognitive work, with regard to specific characteristics of memory decline in AD. In the current article, basic principles of common functional imaging procedures will be explained and it will be discussed how they can be reasonably applied for the assessment of memory decline in AD. Furthermore, it will be illustrated how these imaging procedures have been employed to improve early and specific diagnosis of the disease, to understand specific pathomechanisms of memory dysfunction and associated compensatory mechanisms, and to draw reverse conclusions on physiological function of memory.  相似文献   

18.
《Médecine Nucléaire》2017,41(6):453-457
A rise in prostate-specific antigen serum level (PSA) is an increasing issue, which occurs in more than one third of the patients who underwent radical prostatectomy. Thus, imaging these patients is of importance in order to localize residual disease and then to propose suitable therapy. The usefulness of 18F-fluorocholine (FCH) PET/CT in this indication has been demonstrated for several years. Recently, specific ligands of the prostate-specific membrane antigen (PSMA), which is expressed by almost all prostate cancers, were labelled with PET radionuclides. 68Ga-PSMA-11 (PSMA-11) PET/CT has been described as superior to FCH and conventional imaging to detect prostate cancer recurrence. We present the case of a patient with history of prostate cancer, treated by surgery, referred for a rise in PSA serum level and without any residual disease targeted neither on FCH, nor on pelvic MRI. The PSMA-11 PET/CT demonstrated a pelvic lymph node, which was suspect of recurrence and allowed to initiate a specific curative therapy, replacing the “palliative” hormonotherapy, which was planned. A short review of the literature on this topic, focusing on the published PSMA-11 performances and main known interpretation pitfalls.  相似文献   

19.
In vivo mapping of vascular inflammation using multimodal imaging   总被引:1,自引:0,他引:1  
Jarrett BR  Correa C  Ma KL  Louie AY 《PloS one》2010,5(10):e13254

Background

Plaque vulnerability to rupture has emerged as a critical correlate to risk of adverse coronary events but there is as yet no clinical method to assess plaque stability in vivo. In the search to identify biomarkers of vulnerable plaques an association has been found between macrophages and plaque stability—the density and pattern of macrophage localization in lesions is indicative of probability to rupture. In very unstable plaques, macrophages are found in high densities and concentrated in the plaque shoulders. Therefore, the ability to map macrophages in plaques could allow noninvasive assessment of plaque stability. We use a multimodality imaging approach to noninvasively map the distribution of macrophages in vivo. The use of multiple modalities allows us to combine the complementary strengths of each modality to better visualize features of interest. Our combined use of Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) allows high sensitivity PET screening to identify putative lesions in a whole body view, and high resolution MRI for detailed mapping of biomarker expression in the lesions.

Methodology/Principal Findings

Macromolecular and nanoparticle contrast agents targeted to macrophages were developed and tested in three different mouse and rat models of atherosclerosis in which inflamed vascular plaques form spontaneously and/or are induced by injury. For multimodal detection, the probes were designed to contain gadolinium (T1 MRI) or iron oxide (T2 MRI), and Cu-64 (PET). PET imaging was utilized to identify regions of macrophage accumulation; these regions were further probed by MRI to visualize macrophage distribution at high resolution. In both PET and MR images the probes enhanced contrast at sites of vascular inflammation, but not in normal vessel walls. MRI was able to identify discrete sites of inflammation that were blurred together at the low resolution of PET. Macrophage content in the lesions was confirmed by histology.

Conclusions/Significance

The multimodal imaging approach allowed high-sensitivity and high-resolution mapping of biomarker distribution and may lead to a clinical method to predict plaque probability to rupture.  相似文献   

20.
《Médecine Nucléaire》2014,38(6):419-428
ObjectiveExtracranial head and neck tumors classified T1 and T2, because of their small size, are more difficult to diagnose by imaging than the tumors of higher stage. The aim of this study is to evaluate and compare FDG-PET/CT and MRI accuracy for detection of small extracranial head and neck tumors.Materials and methodsA retrospective study was led on 21 patients having a histopathologically proven tumors involving the upper aerodigestive tract, classified T1 or T2 according to TNM staging, which received pre-therapeutic MRI and FDG-PET/CT. Tumoral detection ability was estimated on MRI and FDG-PET/CT by a qualitative scale. Sensitivities of the two methods of imaging were compared between then. The SUVmax and the percentage of enhancement were measured for each tumor and analysed according to T staging.ResultsAmong the 21 tumors, 17 were detected by FDG-PET/CT against 12 by MRI. None of the 4 unidentified lesions by FDG-PET/CT was visible on MRI. FDG-PET/CT correctly identified 5 of the 9 MRI false-negative results. The sensitivity was 80.9 % for FDG-PET/CT and 57.1 % for MRI, on the verge of the statistically significant difference (P = 0.06). There was no significant correlation of the SUVmax to the T staging.ConclusionFDG-PET/TDM could be useful for the identification of primary extracranial head and neck tumors, even small-sized, classified T1 or T2, with a sensitivity higher than MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号