首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Genome size displays an important variability between species without any direct link to complexity. This paradox, so-called "C value paradox", now becomes understood as resulting from a differential abundance of numerous repeated sequences, among which transposable elements. Genomes indeed contain a important proportion of such sequences (95 % of DNA in man, about 45 % of which are transposable elements, up to 99 % of DNA in some plants). While most investigations until now are focalized on genes or coding sequences, which thus represent a small part of the genome, more attention now is dedicated on so-called non-coding sequences. Transposable elements, which are capable of moving around in genomes, inducing mutations, chromosomal rearrangements, gene expression regulations, thus appear as major actors in diversity and evolution. We present here a brief review of the most prominent acquisition in this expanding domain.  相似文献   

3.
Zhang CT  Wang J 《Nucleic acids research》2000,28(14):2804-2814
The Z curve is a three-dimensional space curve constituting the unique representation of a given DNA sequence in the sense that each can be uniquely reconstructed from the other. Based on the Z curve, a new protein coding gene-finding algorithm specific for the yeast genome at better than 95% accuracy has been proposed. Six cross-validation tests were performed to confirm the above accuracy. Using the new algorithm, the number of protein coding genes in the yeast genome is re-estimated. The estimate is based on the assumption that the unknown genes have similar statistical properties to the known genes. It is found that the number of protein coding genes in the 16 yeast chromosomes is ≤5645, significantly smaller than the 5800–6000 which is widely accepted, and much larger than the 4800 estimated by another group recently. The mitochondrial genes were not included into the above estimate. A codingness index called the YZ score (YZ Œ [0,1]) is proposed to recognize protein coding genes in the yeast genome. Among the ORFs annotated in the MIPS (Munich Information Centre for Protein Sequences) database, those recognized as non-coding by the present algorithm are listed in this paper in detail. The criterion for a coding or non-coding ORF is simply decided by YZ > 0.5 or YZ < 0.5, respectively. The YZ scores for all the ORFs annotated in the MIPS database have been calculated and are available on request by sending email to the corresponding author.  相似文献   

4.

Background

The 1000 Genome project paved the way for sequencing diverse human populations. New genome projects are being established to sequence underrepresented populations helping in understanding human genetic diversity. The Kuwait Genome Project an initiative to sequence individual genomes from the three subgroups of Kuwaiti population namely, Saudi Arabian tribe; “tent-dwelling” Bedouin; and Persian, attributing their ancestry to different regions in Arabian Peninsula and to modern-day Iran (West Asia). These subgroups were in line with settlement history and are confirmed by genetic studies. In this work, we report whole genome sequence of a Kuwaiti native from Persian subgroup at >37X coverage.

Results

We document 3,573,824 SNPs, 404,090 insertions/deletions, and 11,138 structural variations. Out of the reported SNPs and indels, 85,939 are novel. We identify 295 ‘loss-of-function’ and 2,314 ’deleterious’ coding variants, some of which carry homozygous genotypes in the sequenced genome; the associated phenotypes include pharmacogenomic traits such as greater triglyceride lowering ability with fenofibrate treatment, and requirement of high warfarin dosage to elicit anticoagulation response. 6,328 non-coding SNPs associate with 811 phenotype traits: in congruence with medical history of the participant for Type 2 diabetes and β-Thalassemia, and of participant’s family for migraine, 72 (of 159 known) Type 2 diabetes, 3 (of 4) β-Thalassemia, and 76 (of 169) migraine variants are seen in the genome. Intergenome comparisons based on shared disease-causing variants, positions the sequenced genome between Asian and European genomes in congruence with geographical location of the region. On comparison, bead arrays perform better than sequencing platforms in correctly calling genotypes in low-coverage sequenced genome regions however in the event of novel SNP or indel near genotype calling position can lead to false calls using bead arrays.

Conclusions

We report, for the first time, reference genome resource for the population of Persian ancestry. The resource provides a starting point for designing large-scale genetic studies in Peninsula including Kuwait, and Persian population. Such efforts on populations under-represented in global genome variation surveys help augment current knowledge on human genome diversity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1233-x) contains supplementary material, which is available to authorized users.  相似文献   

5.
Expansion of genome coding regions by acquisition of new genes   总被引:7,自引:0,他引:7  
Betrán E  Long M 《Genetica》2002,115(1):65-80
As it is the case for non-coding regions, the coding regions of organisms can be expanded or shrunk during evolutionary processes. However, the dynamics of coding regions are expected to be more correlated with functional complexity and diversity than are the dynamics of non-coding regions. Hence, it is interesting to investigate the increase of diversity in coding regions – the origin and evolution of new genes – because this provides a new component to the genetic variation underlying the diversity of living organisms. Here, we examine what is known about the mechanisms responsible for the increase in gene number. Every mechanism affects genomes in a distinct way and to a different extent and it appears that certain organisms favor particular mechanisms. The detail of some interesting gene acquisitions reveals the extreme dynamism of genomes. Finally, we discuss what is known about the fate of new genes and conclude that many of the acquisitions are likely to have been driven by natural selection; they increase functional complexity, diversity, and/or adaptation of species. Despite this, the correlation between complexity of life and gene number is low and closely related species (with very similar life histories) can have very different number of genes. We call this phenomenon the G-value paradox.  相似文献   

6.
7.
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Coding and Non-Coding functions of the Genome” took place October 29–30, 2015 in Barcelona. The 2015 BCEC was the third edition of a series of annual conferences jointly organized by 5 leading research centers in Barcelona together with B-Debate, an initiative of BioCat. Luciano Di Croce from the Center for Genomic Regulation and Marcus Buschbeck from the Josep Carreras Leukemia Research Institute put together the scientific program with a particular focus on the role of non-coding RNAs in enhancer regulation, epigenetic control by Polycomb complexes, histone variants, and nuclear organization. In one and a half days, 22 talks and 56 posters were presented to an audience of 215 participants.  相似文献   

8.
Mining long noncoding RNA in livestock   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

9.
10.
<正>It was recognized that a majority of the whole human genome is transcribed but only about 2%of genome actually encode all the proteins that were supposed,according to the central dogma,executing most of the biological functions of an organism.At an age proteins dominate,over 90%nonprotein coding regions were long regarded as trash,but nevertheless it was puzzling why god would allocate such a big portion of a genome to things without obvious meanings,  相似文献   

11.
12.
Genome annotation in differently evolved organisms presents challenges because the lack of sequence-based homology limits the ability to determine the function of putative coding regions. To provide an alternative to annotation by sequence homology, we developed a method that takes advantage of unusual trypanosomatid biology and skews in nucleotide composition between coding regions and upstream regions to rank putative open reading frames based on the likelihood of coding. The method is 93% accurate when tested on known genes. We have applied our method to the full complement of open reading frames on Chromosome I of Trypanosoma brucei, and we can predict with high confidence that 226 putative coding regions are likely to be functional. Methods such as the one described here for discriminating true coding regions are critical for genome annotation when other sources of evidence for function are limited.  相似文献   

13.
14.
The plasticity of the mammalian transcriptome   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号