首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excretion of sterols from the liver and intestine is regulated by the ABCG5 and ABCG8 transporters. To identify potential regulatory elements, 152 kb of the human ABCG5-ABCG8 gene cluster was sequenced and comparative genome analysis was performed. The two genes are oriented in a head-to-head configuration and are separated by a 374-bp intergenic region, which is highly conserved among several species. Using a reporter construct, the intergenic region was found to act as a bidirectional promoter. A conserved GATA site in the intergenic region was shown by site-directed mutagenesis to act as a repressor for the ABCG5 promoter. The intergenic region was also shown to be partially responsive to treatment by LXR agonists. In summary, several potential regulatory elements were found for the ABCG5 and ABCG8 genes, and the intergenic region was found to act as a bidirectional promoter.  相似文献   

2.
3.
4.
5.
Cholesterol homeostasis is maintained by coordinate regulation of cholesterol synthesis and its conversion to bile acids in the liver. The excretion of cholesterol from liver and intestine is regulated by ATP-binding cassette half-transporters ABCG5 and ABCG8. The genes for these two proteins are closely linked and divergently transcribed from a common intergenic promoter region. Here, we identified a binding site for hepatocyte nuclear factor 4alpha (HNF4alpha) in the ABCG5/ABCG8 intergenic promoter, through which HNF4alpha strongly activated the expression of a reporter gene in both directions. The HNF4alpha-responsive element is flanked by two conserved GATA boxes that were also required for stimulation by HNF4alpha. GATA4 and GATA6 bind to the GATA boxes, coexpression of GATA4 and HNF4alpha leads to a striking synergistic activation of both the ABCG5 and the ABCG8 promoters, and binding sites for HNF4alpha and GATA were essential for maximal synergism. We also show that HNF4alpha, GATA4, and GATA6 colocalize in the nuclei of HepG2 cells and that a physical interaction between HNF4alpha and GATA4 is critical for the synergistic response. This is the first demonstration that HNF4alpha acts synergistically with GATA factors to activate gene expression in a bidirectional fashion.  相似文献   

6.
Alzheimer''s disease (AD) has been postulated to involve defects in the clearance of amyloid-β (Aβ). Activation of liver X receptor α (LXRα) increases the expression of apolipoprotein E (ApoE) as well as cholesterol transporters ABCA1 and ABCG1, leading to augmented clearance of Aβ. We have previously shown that the C allele of rs7120118 in the NR1H3 gene encoding LXRα reduces the risk of AD. Here, we wanted to assess whether the rs7120118 variation affects the progression of AD and modulates the expression of NR1H3 and its downstream targets APOE, ABCA1 and ABCG1.We utilized tissue samples from the inferior temporal cortex of 87 subjects, which were subdivided according to Braak staging into mild, moderate and severe AD groups on the basis of AD-related neurofibrillary pathology. APOE ε4 allele increased soluble Aβ42 levels in the tissue samples in a dose-dependent manner, but did not affect the expression status of APOE. In contrast, the CC genotype of rs7120118 was underrepresented in the severe group, although this result did not reach statistical significance. Also, patients with the CC genotype of rs7120118 showed significantly decreased soluble Aβ42 levels as compared to the patients with TT genotype. Although the severity of AD did not affect NR1H3 expression, the mRNA levels of NR1H3 among the patients with CT genotype of rs7120118 were significantly increased as compared to the patients with TT genotype. These results suggest that genetic variation in NR1H3 modulates the expression of LXRα and the levels of soluble Aβ42.  相似文献   

7.
8.

Aims

Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. There is evidence that dihydrocapsaicin (DHC) can exert multiple pharmacological and physiological effects. Here, we explored the effect of DHC in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high-cholesterol diet.

Methods and Results

apoE−/− mice were randomly divided into two groups and fed a high-fat/high-cholesterol diet with or without DHC for 12 weeks. We demonstrated that cellular cholesterol content was significantly decreased while apoA1-mediated cholesterol efflux was significantly increased following treatment with DHC in THP-1 macrophage-derived foam cells. We also observed that plasma levels of TG, LDL-C, VLDL-C, IL-1β, IL-6, TNF-α and CRP were markedly decreased while plasma levels of apoA1 and HDL-C were significantly increased, and consistent with this, atherosclerotic lesion development was significantly inhibited by DHC treatment of apoE−/− mice fed a high-fat/high-cholesterol diet. Moreover, treatment with both LXRα siRNA and PPARγ siRNA made the up-regulation of DHC on ABCA1, ABCG1, ABCG5, SR-B1, NPC1, CD36, LDLR, HMGCR, apoA1 and apoE expression notably abolished while made the down-regulation of DHC on SRA1 expression markedly compensated. And treatment with PPARγ siRNA made the DHC-induced up-regulation of LXRα expression notably abolished while treatment with LXRα siRNA had no effect on DHC-induced PPARγ expression.

Conclusion

These observations provide direct evidence that DHC can significantly decrease atherosclerotic plaque formation involving in a PPARγ/LXRα pathway and thus DHC may represent a promising candidate for a therapeutic agent for the treatment or prevention of atherosclerosis.  相似文献   

9.
C1q tumor necrosis factor-related protein 12 (CTRP12), a conserved paralog of adiponectin, is closely associated with cardiovascular disease. However, little is known about its role in atherogenesis. The aim of this study was to examine the influence of CTRP12 on atherosclerosis and explore the underlying mechanisms. Our results showed that lentivirus-mediated CTRP12 overexpression inhibited lipid accumulation and inflammatory response in lipid-laden macrophages. Mechanistically, CTRP12 decreased miR-155-5p levels and then increased its target gene liver X receptor α (LXRα) expression, which increased ATP binding cassette transporter A1 (ABCA1)- and ABCG1-dependent cholesterol efflux and promoted macrophage polarization to the M2 phenotype. Injection of lentiviral vector expressing CTRP12 decreased atherosclerotic lesion area, elevated plasma high-density lipoprotein cholesterol levels, promoted reverse cholesterol transport (RCT), and alleviated inflammatory response in apolipoprotein E-deficient (apoE−/−) mice fed a Western diet. Similar to the findings of in vitro experiments, CTRP12 overexpression diminished miR-155-5p levels but increased LXRα, ABCA1, and ABCG1 expression in the aortas of apoE−/− mice. Taken together, these results suggest that CTRP12 protects against atherosclerosis by enhancing RCT efficiency and mitigating vascular inflammation via the miR-155-5p/LXRα pathway. Stimulating CTRP12 production could be a novel approach for reducing atherosclerosis.Subject terms: Non-coding RNAs, Cardiovascular diseases  相似文献   

10.
The closely related human ABC half-transporters, ABCG1 and ABCG4, have been suggested to play an important role in cellular lipid/sterol regulation but no experimental data for their expression or function are available. We expressed ABCG1 and ABCG4 and their catalytic site mutant variants in insect cells, generated specific antibodies, and analyzed their function in isolated membrane preparations. ABCG1 had a high basal ATPase activity, further stimulated by lipophilic cations and significantly inhibited by cyclosporin A, thyroxine or benzamil. ABCG4 had a lower basal ATPase activity which was not modulated by any of the tested compounds. The catalytic site (K-M) mutants had no ATPase activity. Since dimerization is a requirement for half-transporters, we suggest that both ABCG1 and ABCG4 function as homodimers. Importantly, we also found that co-expression of the ABCG4-KM mutant selectively abolished the ATPase activity of the ABCG1 and therefore they most probably also heterodimerize. The heterologous expression, specific recognition, and functional characterization of these transporters should help to delineate their physiological role and mechanism of action.  相似文献   

11.
Hemistepsin A (HsA) is a guaianolide sesquiterpene lactone that inhibits hepatitis and liver fibrosis. We evaluated the effects of HsA on liver X receptor (LXR)-mediated hepatic lipogenesis in vitro and in vivo. Up to 10 μM, HsA did not affect the viability of HepG2 and Huh7 cells. Pretreatment with 5-10 μM HsA significantly decreased the luciferase activity of the LXR response element, which was transactivated by T0901317, GW 3965, and LXRα/retinoid X receptor α overexpression. In addition, it significantly inhibited the mRNA expression of LXRα in HepG2 and Huh7 cells. It also suppressed the expression of sterol regulatory element-binding protein-1c and lipogenic genes and reduced the triglyceride accumulation triggered by T0901317. Intraperitoneal injection of HsA (5 and 10 mg/kg) in mice significantly alleviated the T0901317-mediated increases in hepatocyte diameter and the percentage of regions in hepatic parenchyma occupied by lipid droplets. Furthermore, HsA significantly attenuated hepatic triglyceride accumulation by restoring the impaired expression of LXRα-dependent lipogenic genes caused by T0901317. Therefore, based on its inhibition of the LXRα-dependent signaling pathway, HsA has prophylactic potential for steatosis.  相似文献   

12.
13.
14.
15.
The ATP binding cassette transporters ABCG5 and ABCG8 are indispensable for hepatobiliary cholesterol transport. In this study, we investigated the specificity of the heterodimer for cholesterol acceptors. Dog gallbladder epithelial cells were mono- or double-transfected with lentiviral mouse Abcg5 and Abcg8 vectors. Double-transfected cells showed increased efflux to different bile salt (BS) species, while mono-transfected cells did not show enhanced efflux. The efflux was initiated at micellar concentrations and addition of phosphatidylcholine increased efflux. Cholesterol secretion was highly BS dependent, whereas other cholesterol acceptors such as ApoAI, HDL or methyl-beta-cyclodextrin did not elicit Abcg5/g8 dependent cholesterol secretion.  相似文献   

16.
Tyrosine kinase inhibitors (TKIs) are important in managing lymphoid malignancies by targeting B-cell receptor signaling pathways. Entospletinib (GS-9973) is an oral, selective inhibitor of spleen tyrosine kinase (Syk), currently in the phase II clinical trials for the treatment of chronic lymphocytic leukemia. Syk is abundantly present in the cells of hematopoietic lineage that mediates cell proliferation, differentiation, and adhesion. In this current study, we evaluated the efficacy of GS-9973 to overcome multidrug resistance (MDR) due to the overexpression of the ABCG2 transporter in the non-small cell lung cancer (NSCLC) cell line, NCI-H460/MX20. In vitro, 3 μM of GS-9973 reversed the drug resistance of NCI-H460/MX20 cell line to mitoxantrone or doxorubicin. GS-9973, at 3 μM reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the protein level but did not alter the ABCG2 mRNA expression and subcellular localization of the ABCG2 protein compared to drug-resistant cells incubated with the vehicle. GS-9973 produced a moderate concentration-dependent increase in the ATPase activity of ABCG2 (EC50 = 0.42 µM) and molecular docking data indicated that GS-9973 had a high affinity (-10.226 kcal/mol) for the substrate-binding site of ABCG2. Finally, HPLC analysis proved that the intracellular concentration of GS-9973 is not significantly different in both parental and resistant cell lines. In conclusion, our study suggests that in vitro, GS-9973 in combination with certain anticancer drugs, represent a strategy to overcome ABCG2-mediated MDR cancers.  相似文献   

17.
18.
Fatty acid metabolism is perturbed in atherosclerotic lesions, but whether it affects lesion formation is unknown. To determine whether fatty acid synthesis affects atherosclerosis, we inactivated fatty-acid synthase (FAS) in macrophages of apoE-deficient mice. Serum lipids, body weight, and glucose metabolism were the same in FAS knock-out in macrophages (FASKOM) and control mice, but blood pressure was lower in FASKOM animals. Atherosclerotic extent was decreased 20–40% in different aortic regions of FASKOM as compared with control mice on Western diets. Foam cell formation was diminished in FASKOM as compared with wild type macrophages due to increased apoAI-specific cholesterol efflux and decreased uptake of oxidized low density lipoprotein. Expression of the anti-atherogenic nuclear receptor liver X receptor α (LXRα; Nr1h3) and its downstream targets, including Abca1, were increased in FASKOM macrophages, whereas expression of the potentially pro-atherogenic type B scavenger receptor CD36 was decreased. Peroxisome proliferator-activated receptor α (PPARα) target gene expression was decreased in FASKOM macrophages. PPARα agonist treatment of FASKOM and wild type macrophages normalized PPARα target gene expression as well as Nr1h3 (LXRα). Atherosclerotic lesions were more extensive when apoE null mice were transplanted with LXRα-deficient/FAS-deficient bone marrow as compared with LXRα-replete/FAS-deficient marrow, consistent with anti-atherogenic effects of LXRα in the context of FAS deficiency. These results show that macrophage FAS deficiency decreases atherosclerosis through induction of LXRα and suggest that FAS, which is induced by LXRα, may generate regulatory lipids that cause feedback inhibition of LXRα in macrophages.  相似文献   

19.
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3–6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号