首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular smooth muscle cell (VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 siRNA, but not scrambled siRNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate (by 61%) upon ADAMTS-7 overexpression and retarded proliferation (by 23%) upon ADAMTS-7 siRNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.  相似文献   

2.
In osteoporosis, mesenchymal stem cells (MSCs) prefer to differentiate into adipocytes at the expense of osteoblasts. Although the balance between adipogenesis and osteogenesis has been closely examined, the mechanism of commitment determination switch is unknown. Here we demonstrate that phospholipase D1 (PLD1) plays a key switch in determining the balance between bone and fat mass. Ablation of Pld1 reduced bone mass but increased fat in mice. Mechanistically, Pld1/? MSCs inhibited osteoblast differentiaion with diminished Runx2 expression, while osteoclast differentiation was accelerated in Pld1?/? bone marrow-derived macrophages. Pld1?/? osteoblasts showed decreased expression of osteogenic makers. Increased number and resorption activity of osteoclasts in Pld1?/? mice were corroborated with upregulation of osteoclastogenic markers. Moreover, Pld1?/? osteoblasts reduced β-catenin mediated-osteoprotegerin (OPG) with increased RANKL/OPG ratio which resulted in accelerated osteoclast differentiation. Thus, low bone mass with upregulated osteoclasts could be due to the contribution of both osteoblasts and osteoclasts during bone remodeling. Moreover, ablation of Pld1 further increased bone loss in ovariectomized mice, suggesting that PLD1 is a negative regulator of osteoclastogenesis. Furthermore, loss of PLD1 increased adipogenesis, body fat mass, and hepatic steatosis along with upregulation of PPAR-γ and C/EBPα. Interestingly, adipocyte-specific Pld1 transgenic mice rescued the compromised phenotypes of fat mass and adipogenesis in Pld1 knockout mice. Collectively, PLD1 regulated the bifurcating pathways of mesenchymal cell lineage into increased osteogenesis and decreased adipogenesis, which uncovered a previously unrecognized role of PLD1 in homeostasis between bone and fat mass.  相似文献   

3.
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high‐fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up‐regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1‐forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria‐dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.  相似文献   

4.
5.
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.  相似文献   

6.
7.
BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation following arterial injury plays a critical role in a variety of vascular proliferative disorders, including atherosclerosis and restenosis after balloon angioplasty. In this study, we tested the hypothesis that localized arterial infection at the time of balloon angioplasty with an adenovirus (ADV-tk) encoding the herpes simplex virus thymidine kinase gene (HSV-tk), followed by systemic ganciclovir administration, can inhibit VSMC proliferation and neointima formation in a well-characterized model of arterial injury and restenosis. MATERIALS AND METHODS: The left carotid arteries of 31 male Sprague-Dawley rats were subjected to balloon angioplasty and immediately infected with 2 x 10(9) pfu of either ADV-tk or a control adenovirus that does not encode a recombinant protein (ADV-delta E1). Twenty-four hours after injury, animals from each experimental group were randomized to receive a course of systemic ganciclovir (ADV-tk/+GC, ADV delta E1/+GC) or saline (ADV-tk/-GC, ADV-delta E1/-GC). VSMC DNA synthesis was measured by 5'-bromodeoxuridine (BrdU) incorporation 2-4 days after balloon injury. The extent of restenosis, expressed as the neointima to media (I/M) area ratio was determined by digital planimetry 20 days after balloon injury in each of the four treatment groups. Immunohistochemistry using a mAb to von Willebrand factor (vWF) was used to determine the effects of ADV-tk infection and ganciclovir treatment on re-endothelialization of the carotid arteries 20 days following balloon angioplasty. RESULTS: Forty-one percent of the medial VSMCs in the ADV-tk/-GC arteries were labeled with BrdU 4 days after balloon injury. In contrast, ADV-tk infected animals that were treated with systemic ganciclovir (ADV-tk/+GC) displayed a 40% reduction in BrdU-staining medial VSMCs (p < 0.03). I/M area ratios of the three control groups were 1.17 +/- 0.18 (ADV-tk/-GC, n = 5), 1.15 +/- 0.10 (ADV-delta E1/+GC, n = 6), and 0.91 +/- 0.08 (ADV-delta E1/-GC, n = 6). These differences were not statistically significant (p > 0.05). In contrast, the ADV-tk/+GC animals (n = 6) displayed an I/M area ratio of 0.49 +/- 0.13 which was significantly lower than that seen in each of the three control groups (p < 0.02). None of the treated animals showed evidence of significant organ toxicity at autopsy. A regenerated endothelium was observed in the ADV-tk/+GC animals 20 days after balloon injury. CONCLUSIONS: Localized arterial infection with ADV-tk at the time of balloon angioplasty followed by systemic ganciclovir therapy reduces VSMC proliferation and neointimal expansion in the rat carotid artery injury model. Moreover, combined treatment with ADV-tk and systemic ganciclovir does not result in systemic toxicity and appears to selectively eliminate proliferating VSMCs, while preserving the capacity of the injured arterial segments to re-endothelialize within 3 weeks of injury. Taken together, these results support the feasibility of using this gene therapy approach for the treatment of human vascular proliferative disorders.  相似文献   

8.
BackgroundIncreased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration.MethodsThe proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury.ResultsVSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity.ConclusionsMagnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation.General significanceThis study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis.  相似文献   

9.
10.
11.
AngII (angiotensin II)-induced excessive ROS (reactive oxygen species) generation and proliferation of VSMCs (vascular smooth muscle cells) is a critical contributor to the pathogenesis of atherosclerosis. PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-1α] is involved in the regulation of ROS generation, VSMC proliferation and energy metabolism. The aim of the present study was to investigate whether PGC-1α mediates AngII-induced ROS generation and VSMC hyperplasia. Our results showed that the protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. Overexpression of PGC-1α inhibited AngII-induced proliferation and migration, ROS generation and NADPH oxidase activity in VSMCs. Conversely, Ad-shPGC-1α (adenovirus-mediated PGC-1α-specific shRNA) led to the opposite effects. Furthermore, the stimulatory effect of Ad-shPGC-1α on VSMC proliferation was significantly attenuated by antioxidant and NADPH oxidase inhibitors. Analysis of several key subunits of NADPH oxidase (Rac1, p22phox, p40phox, p47phox and p67phox) and mitochondrial ROS revealed that these mechanisms were not responsible for the observed effects of PGC-1α. However, we found that overexpression of PGC-1α promoted NOX1 degradation through the proteasome degradation pathway under AngII stimulation and consequently attenuated NOX1 (NADPH oxidase 1) expression. These alterations underlie the inhibitory effect of PGC-1α on NADPH oxidase activity. Our data support a critical role for PGC-1α in the regulation of proliferation and migration of VSMCs, and provide a useful strategy to protect vessels against atherosclerosis.  相似文献   

12.

Background

Hyaluronan (HA) is a primary component of the extracellular matrix of cells, and it is involved in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the role of HA in neointimal formation after vascular injury and determine its tissue-specific role in vascular smooth muscle cells (VSMCs) by using a cre-lox conditional transgenic (cTg) strategy.

Methods and Results

HA was found to be expressed in neointimal lesions in humans with atherosclerosis and after wire-mediated vascular injury in mice. Inhibition of HA synthesis using 4-methylumbelliferone markedly inhibited neointimal formation after injury. In vitro experiments revealed that low-molecular-weight HA (LMW-HA) induced VSMC activation, including migration, proliferation, and production of inflammatory cytokines, and reactive oxygen species (ROS). The migration and proliferation of VSMCs were mediated by the CD44/RhoA and CD44/ERK1/2 pathways, respectively. Because HA synthase 2 (HAS2) is predominantly expressed in injured arteries, we generated cTg mice that overexpress the murine HAS2 gene specifically in VSMCs (cHAS2/CreSM22α mice) and showed that HA overexpression markedly enhanced neointimal formation after cuff-mediated vascular injury. Further, HA-overexpressing VSMCs isolated from cHAS2/CreSM22α mice showed augmented migration, proliferation, and production of inflammatory cytokines and ROS.

Conclusion

VSMC-derived HA promotes neointimal formation after vascular injury, and HA may be a potential therapeutic target for cardiovascular disease.  相似文献   

13.
Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenindependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.  相似文献   

14.

Aims

In-stent restenosis remains a serious problem after the implantation of drug-eluting stents, which is attributable to neointima formation and re-endothelialization. Here, we tried to find a new method which aims at selectively inhibiting proliferation of vascular smooth muscle cells (VSMC) proliferation without inhibition of re-endothelialization.

Methods and Results

We used the smooth muscle-specific SM22alpha promoter in a recombinant lentiviral vector to drive overexpression of cell-cycle inhibitor, p27, in VSMCs. p27 effectively inhibited VSMC proliferation mediated by cell cycle arrest at the G0/G1 checkpoint. The SM22alpha-p27 lentiviral vector inhibited VSMC proliferation more effectively than paclitaxel. Rats infected with Lenti-SM22alpha-p27 had a significantly lower intima/media (I/M) ratio and also showed inhibition of restenosis on day 28 after balloon injury. Moreover, the repair of injured endothelium, and re-endothelialization of the carotid artery wall, was not affected by the smooth muscle cell-specific expression of p27.

Conclusion

A recombinant lentiviral vector carrying the SM22alpha promoter was used to effectively infect and selectively overexpress p27 protein in VSMCs, leading to inhibition of intimal hyperplasia without compromising endothelial repair.  相似文献   

15.
16.
Vascular smooth muscle cell(VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7(ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 si RNA, but not scrambled si RNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate(by 61%) upon ADAMTS-7 overexpression and retarded proliferation(by 23%) upon ADAMTS-7 si RNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.  相似文献   

17.
Blocking of the IGF-1 signaling pathway targeting the IGF-1 receptor (IGF-1R) provides a potential treatment strategy for restenosis. In this study, we have examined the effects of a dominant negative IGF-1R (IGF-1Rt) on primary rat VSMCs in vitro and on injured rat carotid artery in vivo. Ad/IGF-1Rt infection inhibited VSMC migration and proliferation, and it also induced apoptosis by inhibiting phosphorylation of Akt and phosphorylation of ERK1/2. Consistent with the anti-proliferative and apoptotic effects in vitro, the Ad/IGF-1Rt infection markedly reduced neointimal formation in carotid injury model. Ad/IGF-1Rt treated carotid arteries exhibited a suppressed proliferation index, PCNA expression, and also were stained positive for TUNEL assay. These results indicate that a dominant negative IGF-1R has the potential to reduce neointimal formation of injured rats' carotid arteries. The delivery of dominant negative IGF-1R by adenoviral or other vectors may provide a useful strategy for inhibiting restenosis after angioplasty.  相似文献   

18.
Following interventions to treat atherosclerosis, such as coronary artery bypass graft surgery, restenosis occurs in approximately 40% of patients. Identification of proteins regulating intimal thickening could represent targets to prevent restenosis. Our group previously demonstrated that in a murine model of vascular occlusion, Wnt4 protein expression and β-catenin signalling was upregulated which promoted vascular smooth muscle cell (VSMC) proliferation and intimal thickening. In this study, the effect of age on VSMC proliferation, intimal hyperplasia and Wnt4 expression was investigated. In vitro proliferation of VSMCs isolated from young (2 month) or old (18–20 month) C57BL6/J mice was assessed by immunocytochemistry for EdU incorporation. As previously reported, 400 ng/mL recombinant Wnt4 protein increased proliferation of VSMCs from young mice. However, this response was absent in VSMCs from old mice. As our group previously reported reduced intimal hyperplasia in Wnt4+/? mice compared to wildtype controls, we hypothesised that impaired Wnt4 signalling with age may result in reduced neointimal formation. To investigate this, carotid artery ligation was performed in young and old mice and neointimal area was assessed 21 days later. Surprisingly, neointimal area and percentage lumen occlusion were not significantly affected by age. Furthermore, neointimal cell density and proliferation were also unchanged. These data suggest that although Wnt4-mediated proliferation was impaired with age in primary VSMCs, carotid artery ligation induced neointimal formation and proliferation were unchanged in old mice. These results imply that Wnt4-mediated proliferation is unaffected by age in vivo, suggesting that therapeutic Wnt4 inhibition could inhibit restenosis in patients of all ages.  相似文献   

19.
A chemokine-like factor 1 (CKLF1) is a recently discovered chemokine with broad-spectrum biological functions in inflammation and autoimmune diseases. C19 as a CKLF1’s C-terminal peptide has been reported to exert inhibitory effects in a variety of diseases. However, the roles of CKLF1 and C19 on vascular smooth muscle cell (VSMC) migration and neointima formation still remain elusive. The effects of CKLF1 and C19 on VSMC migration and neointimal formation were investigated in cultured VSMCs and balloon-injured rat carotid arteries based on techniques including adenovirus-induced CKLF1 overexpression, gel based perivascular administration of C19, Boyden chamber, scratch-wound assay, real-time PCR, western blot and immunohistochemical analysis. CKLF1 was noticed to accumulate preferentially in neointima after the injury and colocalize with VSMCs. Luminal delivery of CKLF1 adenovirus to arteries exacerbated intimal thickening while perivascular administration of C19 to injured arteries attenuated this problem. In cultured primary VSMCs, CKLF1 overexpression up-regulated VSMC migration, which was down-regulated by C19. These data suggest that CKLF1 has a pivotal role in intimal hyperplasia by mediating VSMC migration. C19 was demonstrated to inhibit CKLF1-mediatated chemotaxis and restenosis. Thus further studies on C19 may provide a new treatment perspective for atherosclerosis and post-angioplasty restenosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号