首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Papiliocin is a novel 37-residue cecropin-like peptide isolated recently from the swallowtail butterfly, Papilio xuthus. With the aim of identifying a potent antimicrobial peptide, we tested papiliocin in a variety of biological and biophysical assays, demonstrating that the peptide possesses very low cytotoxicity against mammalian cells and high bacterial cell selectivity, particularly against Gram-negative bacteria as well as high anti-inflammatory activity. Using LPS-stimulated macrophage RAW264.7 cells, we found that papiliocin exerted its anti-inflammatory activities by inhibiting nitric oxide (NO) production and secretion of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2, producing effects comparable with those of the antimicrobial peptide LL-37. We also showed that the innate defense response mechanisms engaged by papiliocin involve Toll-like receptor pathways that culminate in the nuclear translocation of NF-κB. Fluorescent dye leakage experiments showed that papiliocin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of papiliocin in 300 mm dodecylphosphocholine micelles by NMR spectroscopy, showing that papiliocin has an α-helical structure from Lys(3) to Lys(21) and from Ala(25) to Val(36), linked by a hinge region. Interactions between the papiliocin and LPS studied using tryptophan blue-shift data, and saturation transfer difference-NMR experiments revealed that Trp(2) and Phe(5) at the N-terminal helix play an important role in attracting papiliocin to the cell membrane of Gram-negative bacteria. In conclusion, we have demonstrated that papiliocin is a potent peptide antibiotic with both anti-inflammatory and antibacterial activities, and we have laid the groundwork for future studies of its mechanism of action.  相似文献   

2.
UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

3.
4.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The widespread natural sources‐derived cationic peptides have been reported to reveal bacterial killing and/or growth‐inhibiting properties. Correspondingly, a number of artificial peptides have been designed to understand antibacterial mechanism of the cationic peptides. These peptides are expected to be an alternative antibiotic against drug‐resistant pathogenic bacteria because major antimicrobial mechanism of cationic peptides involves bacterial membrane disorder, although those availabilities have not been well evaluated. In this study, cationic peptides containing Aib were prepared to evaluate the availability as an antimicrobial agent, especially against representative pathogenic bacteria. Among them, BRBA20, consisting of five repeated Aib‐Arg‐Aib‐Ala sequences, showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus. Additionally, growth of Serratia marcescens and multidrug‐resistant Pseudomonas aeruginosa, known as proteases‐secreting pathogenic bacteria, were also completely inhibited by BRBA20 under 20 µg/ml peptide concentrations. Our results suggested availabilities of Aib‐derived amphiphilicity and protease resistance in the design of artificial antimicrobial peptides. Comparing BRBA20 with BKBA20, it was also concluded that Arg residue is the preferred cationic source than Lys for antimicrobial action of amphiphilic helices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin‐binding disulfide‐constrained loop region of human ß‐amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C‐terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL‐37, these peptides efficiently killed the Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram‐positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop‐structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
New bioengineering approaches are required for development of more active and less toxic antimicrobial peptides. In this study we used β‐hairpin antimicrobial peptide arenicin‐1 as a template for design of more potent antimicrobials. In particular, six shortened 17‐residue analogs were obtained by recombinant expression in Escherichia coli. Besides, we have introduced the second disulfide bridge by analogy with the structure of tachyplesins. As a result, a number of analogs with enhanced activity and cell selectivity were developed. In comparison with arenicin‐1, which acts on cell membranes with low selectivity, the most potent and promising its analog termed ALP1 possessed two‐fold higher antibacterial activity and did not affect viability of mammalian cells at concentration up to 50 μM. The therapeutic index of ALP1 against both Gram‐positive and Gram‐negative bacteria was significantly increased compared with that of arenicin‐1 while the mechanism of action remained the same. Like arenicin‐1, the analog rapidly disrupt membranes of both stationary and exponential phase bacterial cells and effectively kills multidrug‐resistant Gram‐negative bacteria. Furthermore, ALP1 was shown to bind DNA in vitro at a ratio of 1:1 (w/w). The circular dichroism spectra demonstrated that secondary structures of the shortened analogs were similar to that of arenicin‐1 in water solution, but significantly differed in membrane‐mimicking environments. This work shows that a strand length is one of the key parameters affecting cell selectivity of β‐hairpin antimicrobial peptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.  相似文献   

9.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Cyclolipopeptides derived from the antimicrobial peptide c(Lys-Lys-Leu-Lys-Lys-Phe-Lys-Lys-Leu-Gln) (BPC194) were prepared on solid-phase and screened against four plant pathogens. The incorporation at Lys5 of fatty acids of 4 to 9 carbon atoms led to active cyclolipopeptides. The influence on the antimicrobial activity of the Lys residue that is derivatized was also evaluated. In general, acylation of Lys1, Lys2 or Lys5 rendered the sequences with the highest activity. Incorporation of a D-amino acid maintained the antimicrobial activity while significantly reduced the hemolysis. Replacement of Phe with a His also yielded cyclolipopeptides with low hemolytic activity. Derivatives exhibiting low phytotoxicity in tobacco leaves were also found. Interestingly, sequences with or without significant activity against phytopathogenic bacteria and fungi, but with differential hemolysis and phytotoxicity were identified. Therefore, this study represents an approach to the development of bioactive peptides with selective activity against microbial, plant and animal cell targets. These selective cyclolipopeptides are candidates useful not only to combat plant pathogens but also to be applied in other fields.  相似文献   

11.
The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α‐helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram‐positive and Gram‐negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane‐mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan‐containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N‐phenyl‐1‐naphthylamine and detecting cytoplasmic β‐galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
We describe a microbial flow cytometry method that quantifies within 3 hours antimicrobial peptide (AMP) activity, termed Minimum Membrane Disruptive Concentration (MDC). Increasing peptide concentration positively correlates with the extent of bacterial membrane disruption and the calculated MDC is equivalent to its MBC. The activity of AMPs representing three different membranolytic modes of action could be determined for a range of Gram positive and negative bacteria, including the ESKAPE pathogens, E. coli and MRSA. By using the MDC50 concentration of the parent AMP, the method provides high-throughput, quantitative screening of AMP analogues. A unique feature of the MDC assay is that it directly measures peptide/bacteria interactions and lysed cell numbers rather than bacteria survival as with MIC and MBC assays. With the threat of multi-drug resistant bacteria, this high-throughput MDC assay has the potential to aid in the development of novel antimicrobials that target bacteria with improved efficacy.  相似文献   

13.
Hospital‐acquired infections caused by multidrug‐resistant bacteria pose significant challenges for treatment, which necessitate the development of new antibiotics. Antimicrobial peptides are considered potential alternatives to conventional antibiotics. The skin of Anurans (frogs and toads) amphibians is an extraordinarily rich source of antimicrobial peptides. CPF‐C1 is a typical cationic antimicrobial peptide that was originally isolated from the tetraploid frog Xenopus clivii. Our results showed that CPF‐C1 has potent antimicrobial activity against both sensitive and multidrug‐resistant bacteria. It disrupted the outer and inner membranes of bacterial cells. CPF‐C1 induced both propidium iodide uptake into the bacterial cell and the leakage of calcein from large liposome vesicles, which suggests a mode of action that involves membrane disturbance. Scanning electron microscopy and transmission electron microscopy verified the morphologic changes of CPF‐C1‐treated bacterial cells and large liposome vesicles. The membrane‐dependent mode of action signifies that the CPF‐C1 peptide functions freely and without regard to conventional resistant mechanisms. Additionally, it is difficult for bacteria to develop resistance against CPF‐C1 under this action mode. Other studies indicated that CPF‐C1 had low cytotoxicity against mammalian cell. In conclusion, considering the increase in multidrug‐resistant bacterial infections, CPF‐C1 may offer a new strategy that can be considered a potential therapeutic agent for the treatment of diseases caused by multidrug‐resistant bacteria. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Antimicrobial peptides are major components of the innate self‐defence system and a large number of peptides have been designed to study the mechanism of action. In the present study, a small combinatorial library was designed to study whether the biological activity of Val/Arg‐rich peptides is associated with targeted cell membranes. The peptides were produced by segregating hydrophilic residues on the polar side and hydrophobic residues on the opposite side. The peptides displayed strong antimicrobial activity against Gram‐negative and Gram‐positive bacteria, but weak haemolysis even at a concentration of 256 µM. CD spectra showed that the peptides formed α‐helical‐rich structure in the presence of negatively charged membranes. The tryptophan fluorescence and quenching experiments indicated that the peptides bound preferentially to negatively charged phospholipids over zwitterionic phospholipids, which corresponds well with the biological activity data. In the in vivo experiment, the peptide G6 decreased the bacterial counts in the mouse peritoneum and increased survival after 7 days. Overall, a high binding affinity with negatively charged phospholipids correlated closely with the cell selectivity of the peptides and some peptides in this study may be likely candidates for the development of antibacterial agents. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The defensin‐like antimicrobial peptides have been characterized from various other arthropods including insects, scorpions, and ticks. But no natural spider defensin‐like antimicrobial peptides have ever been isolated from spiders, except couple of cDNA and DNA sequences of five spider species revealed by previous genomic study. In this work, a defensin‐like antimicrobial peptide named Oh‐defensin was purified and characterized from the venoms of the spider, Ornithoctonus hainana. Oh‐defensin is composed of 52 amino acid (aa) residues including six Cys residues that possibly form three disulfide bridges. Its aa sequence is MLCKLSMFGAVLGV PACAIDCLPMGKTGGSCEGGVCGCRKLTFKILWDKKFG. By BLAST search, Oh‐defensin showed significant sequence similarity to other arthropod antimicrobial peptides of the defensin family. Oh‐defensin exerted potent antimicrobial activities against tested microorganisms including Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cDNA encoding Oh‐defensin precursor was also cloned from the cDNA library of O. hainana. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Cationic amphipathic α-helical peptides preferentially disrupt anionic lipids in mixed model membranes, potentially causing a catastrophic release of the cell contents or attenuation of the membrane potential. The effective role of such peptides requires considerable discrimination between target and host cells, which is likely to occur at the level of the cell membrane. Here, we explore the roles of a variety of common membrane constituents in mediating the interaction between the antimicrobial peptide pleurocidin and model membranes. We employ intrinsic tryptophan fluorescence and circular dichroism to observe the effect of increasing concentrations of sterol in the membrane on peptide binding, using 2H solid-state NMR of chain deuterated lipids simultaneously to probe the effective chain disruption of the anionic phospholipid component of the membrane. We show that the degree of ordering of the lipid acyl chains in the membrane is dependent on the nature of the zwitterionic phospholipid headgroup in mixed anionic membranes. Furthermore, the presence of cholesterol and ergosterol increases acyl chain order in the liquid crystalline model membranes, but to differing degrees. Our results show how sterols can protect even negatively charged membranes from the disruptive effects of antimicrobial peptides, thereby providing a molecular view of the differences in sensitivity of various target membranes to linear cationic antibiotic peptides where bacteria (no sterols) are most susceptible, lower eukaryotes including fungi (containing ergosterol) exhibit an intermediate degree of sensitivity, and higher organisms (containing cholesterol) are largely resistant to antimicrobial peptides.  相似文献   

17.
Antimicrobial peptides (AMPs) are naturally produced, gene encoded molecules with a direct antimicrobial activity against pathogens, often also showing other immune-related properties. Anuran skin secretions are rich in bioactive peptides, including AMPs, and we have reported a novel targeted sequencing approach to identify novel AMPs simultaneously in different frog species, from small quantities of skin tissue. Over a hundred full-length peptides were identified from specimens belonging to five different Ranidae frog species, out of which 29 were novel sequences. Six of these were selected for synthesis and testing against a panel of Gram-negative and Gram-positive bacteria. One peptide, identified in Rana arvalis, proved to be a potent and broad-spectrum antimicrobial, active against ATCC bacterial strains and a multi-drug resistant clinical isolate. CD spectroscopy suggests it has a helical conformation, while surface plasmon resonance (SPR) that it may self-aggregate/oligomerize at the membrane surface. It was found to disrupt the bacterial membrane at sub-MIC, MIC and above-MIC concentrations, as observed by flow cytometry and/or visualized by atomic force microscopy (AFM). Only a limited toxicity was observed towards peripheral blood mononuclear cells (PBMC) with a more pronounced effect observed against the MEC-1 cell line.  相似文献   

18.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The emergence of strains of multidrug‐resistant Gram‐negative bacteria mandates a search for new types of antimicrobial agents. Alyteserin‐2a (ILGKLLSTAAGLLSNL.NH2) is a cationic, α‐helical peptide, first isolated from skin secretions of the midwife toad, Alytes obstetricans, which displays relatively weak antimicrobial and haemolytic activities. Increasing the cationicity of alyteserin‐2a while maintaining amphipathicity by the substitution Gly11→ Lys enhanced the potency against both Gram‐negative and Gram‐positive bacteria by between fourfold and 16‐fold but concomitantly increased cytotoxic activity against human erythrocytes by sixfold (mean concentration of peptide producing 50% cell death; LC50 = 24 µm ). Antimicrobial potency was increased further by the additional substitution Ser7→Lys, but the resulting analogue remained cytotoxic to erythrocytes (LC50 = 38 µm ). However, the peptide containing d ‐lysine at positions 7 and 11 showed high potency against a range of Gram‐negative bacteria, including multidrug‐resistant strains of Acinetobacter baumannii and Stenotrophomonas maltophilia (minimum inhibitory concentration = 8 µm ) but appreciably lower haemolytic activity (LC50 = 185 µm ) and cytotoxicity against A549 human alveolar basal epithelial cells (LC50 = 65 µm ). The analogue shows potential for treatment of nosocomial pulmonary infections caused by bacteria that have developed resistance to commonly used antibiotics. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Gramicidin S (GS) is a cyclic decapeptide antibiotic active against both Gram‐positive and Gram‐negative bacteria as well as against several pathogenic fungi. However, clinical application of GS is limited because of GS hemolytic activity. The large number of GS analogues with potentially attenuated hemolytic activity has been developed over the last two decades. For all new GS derivatives, the antimicrobial test is accompanied with the hemolytic activity assay. At the same time, neither GS nor its analogues were tested against other blood cells. In the present work, the effects of GS on platelets and platelet aggregates have been studied. GS interaction with platelets is concentration dependent and leads either to platelet swelling or platelet shape change. Effect of GS on platelets is independent of platelet aggregation mechanism. GS induces disaggregation of platelet aggregates formed in the presence of aggregation agonists. The rate of the GS interaction with platelet membranes depends on membrane lipid mobility and significantly increases with temperature. The interaction of GS with the platelet membranes depends strongly on the state of the membrane lipids. Factors affecting the membrane lipids (temperature, lipid peroxidation and ionising irradiation) modify GS interaction with platelets. Our results show that GS is active not only against erythrocytes but also against other blood cells (platelets). The estimated numbers of GS molecules per 1 µm2 of a blood cell required to induce erythrocyte hemolysis and disaggregation of platelet aggregates are comparable. This must be considered when developing new antimicrobial GS analogues with improved hemolytic properties. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号