首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastric and hypothalamic hormone ghrelin is the endogenous agonist of the growth hormone secretagogue receptor GHS-R1(a). Ghrelin stimulates growth hormone release and appetite via the hypothalamus. However, putative direct peripheral effects of ghrelin remain poorly understood. Rat adipose tissue expresses GHS-R1(a) mRNA, suggesting ghrelin may directly influence adipocyte function. We have investigated the effects of ghrelin on insulin-stimulated glucose uptake in isolated white adipocytes in vitro. RT-PCR confirmed the expression of GHS-R1(a) mRNA in epididymal adipose tissue. However, GHS-R1(a) expression was not detected in the peri-renal fat pads. Ghrelin increased insulin-stimulated deoxyglucose uptake in isolated white adipocytes extracted from the epididymal fat pads of male Wistar rats. Ghrelin 1000 nM significantly increased deoxyglucose uptake by 55% in the presence of 0.1 nM insulin. However, ghrelin administration in the absence of insulin had no effect on adipocyte deoxyglucose uptake, suggesting that ghrelin acts synergistically with insulin. Des-acyl ghrelin, a major circulating non-octanylated form of ghrelin, had no effect on insulin-stimulated glucose uptake. Furthermore, acylated ghrelin had no effect on deoxyglucose uptake in adipocytes from peri-renal fat pads suggesting that ghrelin may influence glucose uptake via the GHS-R1(a). Ghrelin therefore appears to directly potentiate adipocyte insulin-stimulated glucose uptake in selective adipocyte populations. Ghrelin may play a role in adipocyte regulation of glucose homeostasis.  相似文献   

2.
Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPARγ agonists, usually used as antidiabetic drugs, induce excessive lipid accumulation in adipocytes in addition to improvement of insulin resistance.  相似文献   

3.
The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes   总被引:16,自引:0,他引:16  
Ghrelin, a stomach-derived hormone, induces adiposity when administered to rodents. Because ghrelin receptor is abundantly expressed in adipose tissue, we investigated the role of ghrelin in adipocyte biology. We observed ghrelin receptor expression in 3T3-L1 preadipocytes and adipocytes. Treatment of preadipocytes with ghrelin induced cellular proliferation and differentiation to mature adipocytes, as well as basal and insulin-stimulated glucose transport, but it inhibited adipocyte apoptosis induced by serum deprivation. Exposure of 3T3-L1 cells to ghrelin caused a rapid activation of MAPKs, especially ERK1/2. Chemical inhibition of MAPK blocked the mitogenic and antiapoptotic effects of ghrelin. Ghrelin also stimulated the insulin receptor substrate-associated phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 preadipocytes and adipocytes, whereas inhibition of this pathway blocked the effects of ghrelin on cell proliferation, antiapoptosis and glucose uptake. These findings suggest that the direct effects of ghrelin on proliferation, differentiation, and apoptosis in adipocytes may play a role in regulating fat cell number. These effects may be mediated via activation of the MAPK and phosphatidylinositol 3-kinase/Akt pathways.  相似文献   

4.
Objective: Acetyl CoA carboxylase (ACC) is a key enzyme in energy balance. It controls the synthesis of malonyl‐CoA, an allosteric inhibitor of carnitine palmitoyltransferase‐1 (CPT‐I). CPT‐I is the gatekeeper of free fatty acid (FFA) oxidation. To test the hypothesis that both enzymes play critical roles in regulation of FFA partitioning in adipocytes, we compared enzyme mRNA expression and specific activity from fed, fasted, and diabetic rats. Research Methods and Procedures: Direct effects of nutritional state, insulin, and FFAs on CPT‐I and ACC mRNA expression were assessed in adipocytes, liver, and cultured adipose tissue explants. We also determined FFA partitioning in adipocytes from donors exposed to different nutritional conditions. Results: CPT‐I mRNA and activity decreased in adipocytes but increased in liver in response to fasting. ACC mRNA and activity decreased in both adipocytes and liver during fasting. These changes were not caused directly by fasting‐associated changes in plasma insulin and FFA concentrations because insulin suppressed CPT‐I mRNA and did not affect ACC mRNA in vitro, whereas exogenous oleate had no effect on either. Despite the decrease in adipocyte CPT‐I mRNA and specific activity, CO2 production from endogenous FFAs increased, suggesting increased FFA transport through CPT‐I for β‐oxidation. Discussion: Stimulation of FFA transport through CPT‐I occurs in both tissues, but CPT‐I mRNA and specific activity correlate with FFA transport in liver and not in adipocytes. We conclude that the mechanism responsible for increasing FFA oxidation in adipose tissue during fasting involves mainly allosteric regulation, whereas altered gene expression may play a central role in the liver.  相似文献   

5.
Periods of fasting, in most animals, are fueled principally by fatty acids, and changes in the regulation of fatty acid oxidation must exist to meet this change in metabolic substrate use. We examined the regulation of carnitine palmitoyltransferase (CPT) I, to help explain changes in mitochondrial fatty acid oxidation with fasting. After fasting rainbow trout (Oncorhynchus mykiss) for 5 wk, the mitochondria were isolated from red muscle and liver to determine (1) mitochondrial fatty acid oxidation rate, (2) CPT I activity and the concentration of malonyl-CoA needed to inhibit this activity by 50% (IC(50)), (3) mitochondrial membrane fluidity, and (4) CPT I (all five known isoforms) and peroxisome proliferator-activated receptor (PPARα and PPARβ) mRNA levels. Fatty acid oxidation in isolated mitochondria increased during fasting by 2.5- and 1.75-fold in liver and red muscle, respectively. Fasting also decreased sensitivity of CPT I to malonyl-CoA (increased IC(50)), by two and eight times in red muscle and liver, respectively, suggesting it facilitates the rate of fatty acid oxidation. In the liver, there was also a significant increase CPT I activity per milligram mitochondrial protein and in whole-tissue PPARα and PPARβ mRNA levels. However, there were no changes in mitochondrial membrane fluidity in either tissue, indicating that the decrease in CPT I sensitivity to malonyl-CoA is not due to bulk fluidity changes in the membrane. However, there were significant differences in CPT I mRNA levels during fasting. Overall, these data indicate some important changes in the regulation of CPT I that promote the increased mitochondrial fatty acid oxidation that occurs during fasting in trout.  相似文献   

6.
Motilin is a circulating gastrointestinal peptide secreted primarily by duodenal mucosal M cells and recognized for its prokinetic effects on gastrointestinal tissues. Little information is available regarding effects on insulin/glucose homeostasis or adipocyte function. Our aim was to evaluate the effects of motilin on adipocyte proliferation, differentiation, lipolysis, and macronutrient uptake in adipocytes. 3T3-L1 cells and primary rat adipocytes were treated acutely and chronically with varying motilin concentrations, and effects were compared with vehicle alone (control), set as 100% for all assays. In preadipocytes, motilin stimulated proliferation ([(3)H]thymidine incorporation) and mitochondrial activity (141 ± 10%, P < 0.001 and 158 ± 10%, respectively, P < 0.001), in a concentration-dependent manner. Chronic supplementation with motilin during differentiation further increased lipogenesis (Oil red O staining 191 ± 27%, P < 0.05) and was associated with an upregulation of PPARγ (148 ± 8%, P < 0.01), C/EBPα (142 ± 17%, P < 0.05), and Cav3 (166 ± 20%, P < 0.05) expression. In mature 3T3-L1 adipocytes motilin increased fatty acid uptake/incorporation (≤ 202 ± 12%; P < 0.01) and glucose uptake (146 ± 9% P < 0.05) and decreased net fatty acid release (maximal -31%, P < 0.05) without influencing total lipolysis (glycerol release). Similar effects were obtained in primary rat adipocytes. Motilin acutely increased expression of PPARγ, CEBPβ, DGAT1, and CD36 while decreasing adiponectin mRNA and secretion. In human adipose tissue, motilin receptor GPR38 correlated with HOMA-IR and GHSR1 (r = 0.876, P < 0.0001). Motilin binding and fatty acid incorporation into adipocytes were inhibited by antagonists MB10 and [D-lys3]-GRP6 and PI 3-kinase inhibitor wortmannin. Taken together, these results suggest that motilin may directly influence adipocyte functions by stimulating energy storage.  相似文献   

7.
8.
Gao X  Li K  Hui X  Kong X  Sweeney G  Wang Y  Xu A  Teng M  Liu P  Wu D 《The Biochemical journal》2011,435(3):723-732
The adipocyte is the principal cell type for fat storage. CPT1 (carnitine palmitoyltransferase-1) is the rate-limiting enzyme for fatty acid β-oxidation, but the physiological role of CPT1 in adipocytes remains unclear. In the present study, we focused on the specific role of CPT1A in the normal functioning of adipocytes. Three 3T3-L1 adipocyte cell lines stably expressing hCPT1A (human CPT1A) cDNA, mouse CPT1A shRNA (short-hairpin RNA) or GFP (green fluorescent protein) were generated and the biological functions of these cell lines were characterized. Alteration in CPT1 activity, either by ectopic overexpression or pharmacological inhibition using etomoxir, did not affect adipocyte differentiation. However, overexpression of hCPT1A significantly reduced the content of intracellular NEFAs (non-esterified fatty acids) compared with the control cells when adipocytes were challenged with fatty acids. The changes were accompanied by an increase in fatty acid uptake and a decrease in fatty acid release. Interestingly, CPT1A protected against fatty acid-induced insulin resistance and expression of pro-inflammatory adipokines such as TNF-α (tumour necrosis factor-α) and IL-6 (interleukin-6) in adipocytes. Further studies demonstrated that JNK (c-Jun N terminal kinase) activity was substantially suppressed upon CPT1A overexpression, whereas knockdown or pharmacological inhibition of CPT1 caused a significant enhancement of JNK activity. The specific inhibitor of JNK SP600125 largely abolished the changes caused by the shRNA- and etomoxir-mediated decrease in CPT1 activity. Moreover, C2C12 myocytes co-cultured with adipocytes pre-treated with fatty acids displayed altered insulin sensitivity. Taken together, our findings have identified a favourable role for CPT1A in adipocytes to attenuate fatty acid-evoked insulin resistance and inflammation via suppression of JNK.  相似文献   

9.
The objective of this study was to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR)-induced AMP-activated protein kinase (AMPK) activation on basal and insulin-stimulated glucose and fatty acid metabolism in isolated rat adipocytes. AICAR-induced AMPK activation profoundly inhibited basal and insulin-stimulated glucose uptake, lipogenesis, glucose oxidation, and lactate production in fat cells. We also describe the novel findings that AICAR-induced AMPK phosphorylation significantly reduced palmitate (32%) and oleate uptake (41%), which was followed by a 50% reduction in palmitate oxidation despite a marked increase in AMPK and acetyl-CoA carboxylase phosphorylation. Compound C, a selective inhibitor of AMPK, not only completely prevented the inhibitory effect of AICAR on palmitate oxidation but actually caused a 2.2-fold increase in this variable. Compound C also significantly increased palmitate oxidation in the presence of inhibitory concentrations of malonyl-CoA and etomoxir indicating an increase in CPT1 activity. In contrast to skeletal muscle in which AMPK stimulates fatty acid oxidation to provide ATP as a fuel, we propose that AMPK activation inhibits lipogenesis and fatty acid oxidation in adipocytes. Inhibition of lipogenesis would conserve ATP under conditions of cellular stress, although suppression of intra-adipocyte oxidation would spare fatty acids for exportation to other tissues where their utilization is crucial for energy production. Additionally, the stimulatory effect of compound C on long chain fatty acid oxidation provides a novel pharmacological approach to promote energy dissipation in adipocytes, which may be of therapeutic importance for obesity and type II diabetes.  相似文献   

10.
Long chain fatty acid transport is selectively up-regulated in adipocytes of Zucker fatty rats, diverting fatty acids from sites of oxidation toward storage in adipose tissue. To determine whether this is a general feature of obesity, we studied [(3)H]oleate uptake by adipocytes and hepatocytes from 1) homozygous male obese (ob), diabetic (db), fat (fat), and tubby (tub) mice and from 2) male Harlan Sprague-Dawley rats fed for 7 weeks a diet containing 55% of calories from fat. V(max) and K(m) were compared with controls of the appropriate background strain (C57BL/6J or C57BLKS) or diet (13% of calories from fat). V(max) for adipocyte fatty acid uptake was increased 5-6-fold in ob, db, fat, and tub mice versus controls (p < 0.001), whereas no differences were seen in the corresponding hepatocytes. Similar changes occurred in fat-fed rats. Of three membrane fatty acid transporters expressed in adipocytes, plasma membrane fatty acid-binding protein mRNA was increased 9-11-fold in ob and db, which lack a competent leptin/leptin receptor system, but was not increased in fat and tub, i.e. in strains with normal leptin signaling capability; fatty acid translocase mRNA was increased 2.2-6.5-fold in tub, ob, and fat adipocytes, but not in db adipocytes; and only marginal changes in fatty acid transport protein 1 mRNA were found in any of the mutant strains. Adipocyte fatty acid uptake is generally increased in murine obesity models, but up-regulation of individual transporters depends on the specific pathophysiology. Leptin may normally down-regulate expression of plasma membrane fatty acid binding protein.  相似文献   

11.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

12.
Fatty acid transport proteins are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. FATP-dependent production of AMP was evaluated using FATP4 proteoliposomes, and fatty acid-dependent activation of AMP-activated protein kinase (AMPK) was assessed in 3T3-L1 adipocytes. Insulin-stimulated fatty acid influx (palmitate or arachidonate) into cultured adipocytes resulted in an increase in the phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase. Consistent with the activation of AMPK, palmitate uptake into 3T3-L1 adipocytes resulted in an increase in intracellular [AMP]/[ATP]. The fatty acid-induced increase in AMPK activation was attenuated in a cell line expressing shRNA targeting FATP1. Taken together, these results demonstrate that, in adipocytes, insulin-stimulated fatty acid influx mediated by FATP1 regulates AMPK and provides a potential regulatory mechanism for balancing de novo production of fatty acids from glucose metabolism with influx of preformed fatty acids via phosphorylation of acetyl-CoA carboxylase.  相似文献   

13.
14.
The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.  相似文献   

15.
In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity.  相似文献   

16.
Studies in mammals have shown that adiponectin is secreted mainly by adipocytes, and it plays a crucial role in glucose and lipid metabolism in muscles. Clarifying the cross-talk role of adiponectin between adipose tissue and skeletal muscle tissue is very important for internal homeostasis. The glucose and lipid metabolism of chicken is different from that of mammals, and the role of adiponectin in chickens is unclear. Therefore, it is of great significance to study the effect and mechanism of adiponectin on lipid metabolism in chickens. In the present study, the regulating effect of adiponectin on lipid metabolism in chicken myoblasts was explored by adding a certain concentration of exogenous recombinant adiponectin. Results showed that adiponectin reduced intracellular lipid content, increasing the mRNA expression of adiponectin receptor and cellular uptake of glucose and fatty acids. In addition, adiponectin activated the 5′ adenosine monophosphate activated protein kinase (AMPK) signaling pathway. The above results suggested that adiponectin reduced intracellular lipid content, mainly by binding to adiponectin receptor, activating AMPK pathway, increasing cellular uptake of glucose and fatty acids and promoting lipid oxidation.  相似文献   

17.
18.
We hypothesized that preadipocyte differentiation would be depressed by differentiating myoblasts, whereas preadipocytes would promote adipogenic gene expression in myoblasts in a co-culture system. We also determined the effects of arginine, a biological precursor of nitric oxide, and/or trans-10, cis-12 conjugated linoleic acid (CLA) on adipogenic gene expression during differentiation of bovine preadipocytes and myoblasts. Bovine semimembranosus satellite cells (BSC) and subcutaneous preadipocytes were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's modified Eagle medium (DMEM) and 1% antibiotics during the 3-day proliferation period. After proliferation, BSC and preadipocytes were treated for 3 days with 3% horse serum/DMEM and 5% FBS/DMEM with antibiotics, respectively. Media also contained 100 μM oleic acid, 10 μg/ml insulin, 1 μg/ml pioglitazone and 1 μg/ml dexamethasone. Subsequently, the differentiating myoblasts and adipocytes were cultured in their respective media with 5 mM arginine and/or 40 μM trans-10, cis-12 CLA for 4 days. Finally, myoblasts and adipocytes were single- or co-cultured for 2 h singly or in combination. Arginine stimulated SCD gene expression, whereas CLA depressed SCD gene expression in adipocytes and myoblasts (P=.002). Co-culture of adipocytes and myoblasts elicited an increase in C/EBPβ and PPARγ gene expression in differentiated myoblasts (P≤.01) and an increase in GPR43 gene expression in adipocytes (P=.01). Expression of AMPKα and CPT1ß was unaffected by co-culture, although SCD gene expression tended (P=.12) to be depressed by co-culture. These experiments demonstrated that co-culture of adipocytes with myoblasts increased adipogenic gene expression in the myoblastic cells.  相似文献   

19.
Though it is well accepted that adipose tissue is central in the regulation of glycemic homeostasis, the molecular mechanisms governing adipocyte glucose uptake remain unclear. Recent studies demonstrate that mitochondrial dynamics (fission and fusion) regulate lipid accumulation and differentiation in adipocytes. However, the role of mitochondrial dynamics in glucose homeostasis has not been explored. The nitric oxide oxidation products nitrite and nitrate are endogenous signaling molecules and dietary constituents that have recently been shown to modulate glucose metabolism, prevent weight gain, and reverse the development of metabolic syndrome in mice. Although the mechanism of this protection is unclear, the mitochondrion is a known subcellular target for nitrite signaling. Thus, we hypothesize that nitrite modulates mitochondrial dynamics and function to regulate glucose uptake in adipocytes. Herein, we demonstrate that nitrite significantly increases glucose uptake in differentiated murine adipocytes through a mechanism dependent on mitochondrial fusion. Specifically, nitrite promotes mitochondrial fusion by increasing the profusion protein mitofusin 1 while concomitantly activating protein kinase A (PKA), which phosphorylates and inhibits the profission protein dynamin-related protein 1 (Drp1). Functionally, this signaling augments cellular respiration, fatty acid oxidation, mitochondrial oxidant production, and glucose uptake. Importantly, inhibition of PKA or Drp1 significantly attenuates nitrite-induced mitochondrial respiration and glucose uptake. These findings demonstrate that mitochondria play an essential metabolic role in adipocytes, show a novel role for both nitrite and mitochondrial fusion in regulating adipocyte glucose homeostasis, and have implications for the potential therapeutic use of nitrite and mitochondrial modulators in glycemic regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号